SciELO - Scientific Electronic Library Online

 
vol.47 número2Hipervariedades mínimas algebraicas en SnStability of holomorphic-horizontal maps and Einstein metrics on flag manifolds índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

  • No hay articulos citadosCitado por SciELO

Links relacionados

  • No hay articulos similaresSimilares en SciELO

Compartir


Revista de la Unión Matemática Argentina

versión impresa ISSN 0041-6932versión On-line ISSN 1669-9637

Rev. Unión Mat. Argent. v.47 n.2 Bahía Blanca jul./dic. 2006

 

Einstein metrics on flag manifolds

Evandro C. F. dos Santos* and Caio J. C. Negreiros**

*Partially supported by FUNCAP
**Partialy supported by CNPq grant 303695/2005-6 and Fapesp grant 02/10246-2

Abstract: In this survey we describe new invariant Einstein metrics on flag manifolds. Following closely San Martin-Negreiros's paper [26] we state results relating Kähler, (1,2)-symplectic and Einstein structures on flags. For the proofs see [11] and [10].

2000 Mathematics Subject Classification. 53C55; 58D17; 53C25; 22F30.

Key words and phrases. Flag manifolds, Einstein metrics, Semi-simple Lie groups.

Introduction

We recall that a Riemannian metric g on a manifold M is called Einstein if Ric (g) = cg for some constant c . As we know Einstein metrics form a special class of metrics on a given manifold (see [4]). In this note we announce properties of these metrics and new examples of Einstein metrics on flag manifolds as described in [11] and [10].

With this purpose in mind, we consider 𝔤 as being a complex semi-simple Lie algebra and Σ a simple root system for 𝔤 . If Θ is an arbitrary subset of Σ , ⟨Θ ⟩ denotes the roots spanned by Θ . We have

 ∑ ∑ ∑ ∑ 𝔤 = 𝔥 ⊕ 𝔤α ⊕ 𝔤 -α ⊕ 𝔤 β ⊕ 𝔤-β, α∈⟨Θ⟩ α∈ ⟨Θ⟩ β∈Π+-⟨Θ⟩ β∈Π+ -⟨Θ⟩

(1)

where 𝔥 is a Cartan subalgebra of 𝔤 and 𝔤α is the root space associated to the root α . Let

 ∑ ∑ ∑ 𝔭Θ := 𝔥 ⊕ 𝔤α ⊕ 𝔤-α ⊕ 𝔤β, α∈⟨Θ ⟩ α∈⟨Θ⟩ β∈Π+ -⟨Θ⟩

(2)

the canonical parabolic subalgebra determined by Θ . Hence

 ∑ 𝔤 = 𝔭Θ ⊕ 𝔤- β. β∈Π+-⟨Θ⟩

(3)

𝔽Θ = G ∕P is called a flag manifold, where G has the Lie algebra 𝔤 and P is the normalizer of 𝔭 in G . Each manifold 𝔽 Θ has a very rich complex geometry, containing families of invariant Hermitian structures denoted by (𝔽Θ, J,ds2) Λ .

The case 𝔽 = 𝔽 Θ for Θ = ∅ , i.e., the full flag manifold is nowadays well understood. Starting with the work of Borel (cf. [7]), the classification of all invariant Hermitian structures is known and it was derived in [26].

On the other hand, the case 𝔽Θ for Θ ⁄= ∅ is much less known so far. Some partial results are derived in [27] and [28].

We now describe the contents of this survey. In the first two sections we discuss all the invariant Hermitian structures on 𝔽 Θ and the associated Einstein system of equations. In Section 3 we present new invariant Einstein metrics on generalized flag manifolds of type Al. We suggest Besse's book [4] as a reference for Einstein manifolds.

In Section 4 we state the classification of all invariant Einstein metrics on 𝔽 (4) and state some partial results relating Kähler, (1,2)-symplectic and Einstein structures on 𝔽 (n) .

For a very stimulating article see [1].

All manifolds and maps between them will be assumed to be  ∞ C in this survey.

 We would like to thank to FAEP-UNICAMP and FAPESP (grant 02/10246-2) for the financial support.

1. General results on the invariant Hermitian geometry of flag manifolds

We denote by ⟨⋅,⋅⟩ the Cartan-Killing form of 𝔤 , and we fix a Weyl basis {X α} α∈Π for 𝔤 . We define the compact real form of 𝔤 , as the real subalgebra

𝔲 = span ℝ{i𝔥ℝ, Aα,iSα : α ∈ Π},

where Aα = Xα - X -α and S α = X α + X - α .

Let xΘ be the origin of 𝔽 Θ . TxΘ𝔽 Θ is identified with

TxΘ 𝔽Θ ≈ 𝔪 Θ =∑ span ℝ{A α,iSα : α ∈∕⟨Θ ⟩} = = 𝔲 , α α∈Π\⟨Θ⟩=ΠΘ

where 𝔲 = (𝔤 ⊕ 𝔤 ) ∩ 𝔲 = span {A ,iS } α α -α ℝ α α . Complexifying 𝔪 Θ we obtain Tℂ 𝔽 xΘ Θ , which can be identified with

 ℂ ∑ 𝔪 Θ = 𝔤β. β∈Π \⟨Θ⟩

(4)

A U -invariant almost complex structure J on 𝔽Θ , is completely determined by a collection of numbers ɛσ = ±1 , σ ∈ ΠΘ .

A U -invariant Riemannian metric ds2Λ on 𝔽Θ is completely characterized by the following inner product ⟨⋅,⋅⟩ on 𝔪 Θ  

⟨X, Y ⟩Λ := - ⟨ΛX, Y ⟩,

(5)

where Λ : 𝔪 Θ → 𝔪 Θ is definite-positive with respect to the Cartan-Killing form. On each irreducible component of 𝔪 Θ , Λ = λ id σ with λ = λ > 0 -σ σ .

Consider τ = the conjugation of 𝔤 relatively to 𝔲 . Hence, ⟨⟨X, Y ⟩⟩Λ = ⟨X, τY ⟩Λ is a Hermitian form on 𝔤 , that originates a U -invariant Hermitian form on 𝔽 Θ .

If Ω = ΩJ,Λ denotes the corresponding Kähler form then

 --- Ω (X ,X ) = - √ - 1λ ε ⟨X ,X ⟩. α β α β α β

(6)

We recall that a almost-Hermitian manifold is said (1, 2) -symplectic if dΩ (X,Y, Z ) = 0 when one of the vectors X , Y , Z is of type (1,0) , and the other two are of type (0,1) . If J is integrable and d Ω ≡ 0 , we say (𝔽 Θ,J,ds2Λ) is a Kähler manifold.

2. Ricci tensor and the Einstein system of equations

We now consider {eα} a B -orthogonal basis adapted to a decomposition of  l 𝔪 = ⊕ 𝔪 . k=1 k  In other words, e ∈ 𝔪 α i  for some i ∈ {1,⋅⋅⋅ ,l}, and α < β if i < j with eα ∈ 𝔪i, eβ ∈ 𝔪j. Define, as in [29],

 γ A αβ = ([eα,eβ],eγ),

(7)

that is,

 [ k ] ∑ γ 2 i j (A αβ) =

(8)

where in the second equation we take all indices α,β,γ  with e ∈ 𝔪 ,e ∈ 𝔪 ,e ∈ 𝔪 . α i β j γ k  Notice that [ ] k i j is independent of orthonormal frame chosen for 𝔪i, 𝔪j,𝔪k  and  ∑ [eα,eβ ] = γ A γαβ eγ

                    [ k ] i j =  [ k ] [ j ] j i = k i

Furthermore, if w  is an element of Weyl´s group then

[ w (γ) ] [ γ ] w(α) w (β) = α β

(9)

   The following result is due to Wang-Ziller [29] (see also [2]):

Lemma 2.1. The components rk of the Ricci tensor of an U -invariant metric on M = U∕K are given by:

 ∑l [ k ] ∑l [ j ] r = -1--+ -1-- -λk-- i j - --1- -λk-- k i (k = 1,⋅⋅⋅ ,l), k 2λk 4dk λiλj 2dk λiλj i,j=1 i,j=1

(10)

where   ⊕l 𝔪 = k=1 𝔪k, dk = dim 𝔪k .

More generally, Arvanitoyeorgos proved in [3] the following result

Proposition 2.2. The Ricci tensor of an invariant metric (Λα) = {λ α > 0, α ∈ ΠM } on a flag manifold 𝔽Θ is given by

Ric (X α,X β) = 0, if α∑,β ∈ ΠM , α + β∑ ∕∈ ΠM 2 2 2 Ric (X ,X ) = (α, α) + m2 + 1- m-α,β(λ-α --(λ-α+β---λβ)-) α -α α,φ 4 λ α+βλβ αφ∈+φΠ∈ΘΠ αβ+∈βΠ∈MΠM

We have the following non-homogeneous version of this equation

 1 ∑ λ2 - (λik - λjk)2 λij = 2 + -- --ij--------------- 2 k⁄=i,j λijλjk

With each solution we associate the Einstein constant, which is defined as the value of the Ricci tensor rij when λ is re-normalized to have unit volume.

3. New Einstein metrics

Using the Einstein system of equations described above, we describe now the known and new Einstein metrics on 𝔽(n ) as in [11] and [10].

a) The normal metric. We notice this metric is not Kähler.

b) Kähler-Einstein metrics

On the flag manifold 𝔽(n) (n ≥ 3) , up to permutation there is a unique integrable structure J , and associated with it a unique (up to scaling) Kähler-Einstein metric (which corresponds to the choice  1 ∑ c = δ = 2 β β according to Matsushima [19] or [4]):

 ( ) 0 -1 -1 ... n-1- | 1 2n n1 . 2n. | || 2n- 0 2n .. .. || | 1 -1 0 ... 1 | Λ = || n. 2.n . . n || . || .. .. .. .. 12n- || ( n-1- ... -1 1- 0 ) 2n n 2n

Thus, counting in the symmetry of this metric, we have n! 2 Kähler-Einstein metrics on 𝔽 (n) .

c) The Arvanitoyeorgos metrics

Arvanitoyeorgos ([3]) considers for all s ∈ [1,n]  metrics in 𝔽 (n) (n ≥ 4 ) satisfying

                     λij = A  ( s ∈ {i,j} ),                     λij = B     otherwise       

The Einstein system is reduced to the equations in A, B whose solution is A = n - 1 and B = n + 1 . Counting permutations, we get n Arvanitoyeorgos metrics whose Einstein constant is seen to be

 2 ∘n -------2-------n-2 c = (n----n-+-2)---(n --1)-(n +-1)---. Arv. 4n (n - 1)2

d) The Sakane-Senda metrics

Sakane and Senda in [25] consider metrics in 𝔽(2m ) (m ≥ 3 ) satisfying

              λij = A  ( i,j ≤ m or i,j > m ),                     λij = B  otherwise

Again, the the Einstein system is reduced to two equations in A, B whose solution is A = m + 2 and B = 3m - 2 .

e) A new family

If m ≥ 6 we find another solution in  𝔽 (2m ) , for A = m + 5 and B = 3m - 5 .

f) Two new families

On 𝔽(2m + 1) (m ≥ 6 ) we consider  

λij = A  ( i,j ≤ m + 1 or i,j > m + 1 ),            λij = B  otherwise

There are two families as solution of the Einstein system. The Einstein constants for these two families are, respectively,

 ∘ ----------------------- 1 1 2n-2 2 4n n+3 ± 2√ (n-5)(n-13) n-1 c± = (2 + 4n((n+3) ±√2(n-1)2--4n+16-)) ( --------4--------) . 2

g) A new metric

Still assuming the same pattern, with m = 2 , we find on 𝔽 (5)  the invariant Einstein metric with A = 1 and B = 2 . The Einstein constant of this metric is  √5- 1140-4 .

We define the class EN K = {ds2Λ; ds2Λ is a Einstein non -K¨ahler metric in a) or c) or d) or e) or f) or g). } .

A complete classification of the Einstein metrics for 𝔽 (n) (n ⁄= 3,4) is completely unknown. It is not even know if the number of such metrics is finite (the Bohn-Wang-Ziller conjecture).

In [11] and [10] we use the procedure described above in order to obtain new Einstein metrics on non-maximal Al -type manifolds. Our notation will be 𝔽(n;n1, ...,nk ) where (n ,...,n ) 1 k  represents block-matrices of size n = ∑k n i=1 i . All the entries in each block are equal, so that the metric is completely expressed by a reduced k × k matrix, which we denote by ^Λ .

Theorem 3.1. a) On 𝔽(5;2,1,1, 1).  The set of restrictions λ = λ = λ and λ = λ = λ , 12 13 14 23 24 34  produce two invariant non-Kähler Einstein. On the other hand the restrictions λ12 = λ13 = λ23 = λ24 and λ14 = λ34 do not produce any solution.

b) On  ---U(n)--- 𝔽 (n;k,q,q,⋅⋅⋅ ,q) = U(k)×U (q)s, i.e. n = k + sq ( √--2--- q( s - 4 + 2 - s) < 2k, ) we look for a (s + 1) × (s + 1) reduced matrix ^Λ with

^ λij = A (1 ∈ {i,j} ),                      B otherwise            

In this way we can produce two non-Kähler Einstein metrics.

c) On 𝔽 (n; k,k,⋅⋅⋅ ,k) with n = sk the invariant metric represented by the s × s matrix ^Λ is Einstein if, and only if, the same matrix represents an Einstein metric on 𝔽 (s) .

4. Results on the classification of Einstein metrics on 𝔽(n )

Gray and Hervella in [13] gave a complete classification of triples (M, g,J ) into sixteen classes for arbitrary almost Hermitian manifolds. San Martin-Negreiros discussed in [26] the case where M is a maximal flag manifold. They have proved that the invariant almost Hermitian structures on maximal flag manifolds can be divided only in three classes, namely

  1. W1 ⊕ W2
  2. W1 ⊕ W3
  3. W1 ⊕ W2 ⊕ W3, where the class W1 ⊕ W2 ⊕ W3 contains any invariant almost Hermitian structures.

In [26] it is proved that an invariant pair (J, Λ) ∈ W1 ⊕ W2 if and only if for all {1, 2} -triple of roots {α, β,γ}

ε λ + ε λ + ε λ = 0. α α β β γ γ

(11)

The next lemma characterizes the Hermitian structures belonging to W1 ⊕ W3 (see [26]) for more details.

Lemma 4.1. A necessary and sufficient condition for an invariant pair (J,Λ )  to be in W1 ⊕ W3 ≈ W1 ⊕ W3 ⊕ W4 is λα = λβ = λ γ ∀ {0,3} -triple {α,β, γ} .

In [11] or [10] the following result is proved:

Theorem 4.2. If ds2 ∈ EN K Λ for n ≥ 4 , then this metric belongs to W1 ⊕ W3 .

This result leads us to conjecture that any invariant Einstein non-Kähler metric on 𝔽 (n) is in W ⊕ W 1 3 . One result supporting this conjecture is

Theorem 4.3. The space 𝔽 (4 ) admits (up to scaling) precisely 3 classes of invariant Einstein metrics: The Kähler-Einstein [7], the 4 Arvanitoyeorgos's class [3], and the class of the normal metric [30].

References

[1]    V. I. Arnold, Symplectization, Complexification and Mathematical Trinities, Fields Institute Communications, 24 (1999), 23-36.        [ Links ]

[2]    A. Arvanitoyeorgos, Invariant Einstein metrics on  generalized flag manifolds, PhD thesis, Rochester University,1991.        [ Links ]

[3]    A. Arvanitoyeorgos, New invariant Einstein metrics on  generalized flag manifolds, Trans. Amer. math.Soc., 337(1993), 981-995.        [ Links ]

[4]    A. Besse, Einstein Manifolds, Springer Verlag, 1987        [ Links ]

[5]    C. Böhm, M. Wang and W. Ziller, A variational approach for compact homogeneous Einstein manifolds, Geometric and Functional Analysis 4 Vol.14, (2004) 681-733.        [ Links ]

[6]    M. Bordemann, M. Forger and H. Romer, Homogeneous Kähler manifolds:Paving the way towards supersymmetric sigma-models, Commun. Math. Physics,102, (1986), 605-647.        [ Links ]

[7]    A. Borel, Kählerian coset spaces of semi-simple Lie groups, Proc. Nat. Acad. Sci. USA 40 (1954), 1147-1151.        [ Links ]

[8]    É. Cartan, Sur les domaines bornés homogènes de l'espace des n variables complexes, Abhandl. Math. Sem. Hamburg, 11 (1935), 116-162        [ Links ]

[9]    N. Cohen, C. J. C. Negreiros, M. Paredes, S. Pinzón, L. A. B. San Martin, f-structures on the classical flag manifold which admit (1,2)-symplectic metrics. Tôhoku Math. J. 57(2) (2005), 262-271.        [ Links ]

[10]    N. Cohen, E. C. F. dos Santos and C. J. C. Negreiros, Properties of Einstein metrics on flag manifolds, Preprint. State University of Campinas, 2005.        [ Links ]

[11]    Evandro C. F. dos Santos,Métricas de Einstein em varedades bandeira, PhD thesis. State University of Campinas, 2005.        [ Links ]

[12]    Evandro C. F. dos Santos, Caio J. C. Negreiros and Sofia Pinzòn, (1,2)-symplectic submanifols of a flag manifold, Preprint. State University of Campinas, 2005.        [ Links ]

[13]    A. Gray and L. M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. 123 (1980), 35-58.        [ Links ]

[14]    M.A.Guest, Geometry of maps between generalized flag manifolds, J. Differential Geometry, 25 (1987), 223-247        [ Links ]

[15]    S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, 1978.        [ Links ]

[16]    D.Hilbert, Die Grundlagen der Physik,Nachr. Akad. Wiss. Gött. 395-407 (1915). Reprinted in Math. Ann., 92 (1924),1-32.        [ Links ]

[17]    M. Kimura, Homogeneous Einstein Metrics on Certain Kähler C-spaces, Advanced Studies in Pure Mathematics. 18-I, 1990. Recent topics in Differential and analytic Geometry (1986), 303-320.        [ Links ]

[18]    S. Kobayashi and K. Nomizu, Foundations of differential geometry, Interscience Publishers, vol.2 (1969).        [ Links ]

[19]    Y. Matsushima, Remarks on Kähler-Einstein Manifolds, Nagoya Math. Journal 46, (1972), 161-173.        [ Links ]

[20]    J. Milnor, Curvatures of left invariant metrics on Lie groups, Adv. in Mathematics 21, (1976), 293-329.        [ Links ]

[21]    X. Mo and C. J. C. Negreiros, (1,2)-Symplectic structures on flag manifolds, Tohoku Math. J. 52 (2000), 271-282.        [ Links ]

[22]    Y. Mutö, On Einstein metrics, Journal of Differential geometry, 9 (1974), 521-530.        [ Links ]

[23]    M. Paredes, Aspectos da geometria complexa das variedades bandeira, Tese de Doutorado, Universidade Estadual de Campinas,2000.        [ Links ]

[24]    S. Pinzòn, Variedades bandeira,estruturas-f e mètricas (1,2)-simplèticas, Tese de Doutorado, Universidade Estadual de Campinas, 2003.        [ Links ]

[25]    Y. Sakane, Homogeneous Einstein metrics on flag manifolds, Lobatchevskii Journal of Mathematics, vol.4, (1999), 71-87.        [ Links ]

[26]    Luiz A. B. San Martin and Caio J. C. Negreiros, Invariant almost Hermitian structures on flag manifolds, Advances in Math., 178 (2003), 277-310.        [ Links ]

[27]    Luiz. A. B. San Martin and Rita. C. J. Silva, Invariant nearly-Kähler structures, preprint, State University of Campinas (2003).        [ Links ]

[28]    Rita de Cássia de J. Silva, Estruturas quase Hermitianas invariantes em espaços homogêneos de grupos semi-simples, Ph.D. thesis, State University of Campinas, 2003.        [ Links ]

[29]    M. Wang and W. Ziller, Existence and Non-Existence of Homogeneous Einstein Metrics, Invent. math., 84, (1986), 177-194.        [ Links ]

[30]    M. Wang and W. Ziller, On normal homogeneous Einstein metrics, Ann. Sci. Ecole norm. Sup.18 (1985), 563-633.        [ Links ]

Evandro C. F. dos Santos
Department of Mathematics
Universidade Regional do Cariri
Av. Leão Sampaio s/n Km 4
Juazeiro do Norte-Ce
Cep 63040-000 - Brazil
evandrocfsantos@gmail.com

Caio J. C. Negreiros
Departament of Mathematics - IMECC - Unicamp
PO Box 6065 - Campinas - Brazil
caione@ime.unicamp.br

Recibido: 20 de octubre de 2005
Aceptado: 15 de noviembre de 2006

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons