SciELO - Scientific Electronic Library Online

 
vol.47 número3Interrogantes en la tecnología de la inoculación de semillas de soja con Bradyrhizobium sppAislamiento de una cepa agresiva de Nomuraea rileyi desde larvas muertas de Anticarsia gemmatalis en Esperanza, Argentina índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

  • No hay articulos citadosCitado por SciELO

Links relacionados

Compartir


Revista argentina de microbiología

versión impresa ISSN 0325-7541

Rev. argent. microbiol. vol.47 no.3 Ciudad Autónoma de Buenos Aires set. 2015

http://dx.doi.org/10.1016/j.ram.2015.04.003 

MICROBIOLOGICAL IMAGE

http://dx.doi.org/10.1016/j.ram.2015.04.003

Possible role of bacteria in the degradation of macro algae Desmarestia anceps Montagne (Phaeophyceae) in Antarctic marine waters

Posible rol de las bacterias en la degradación de la macroalga Desmarestia anceps Montagne (Phaeophyceae) en las aguas marinas antárticas

 

María L. Quartinoa,b, Susana C. Vazquezc,d, Gustavo E.J. Latorree, Walter P. Mac Cormacka,d,*

a. Instituto Antártico Argentino, Ciudad Autónoma de Buenos Aires, Argentina
b. Museo Argentino de Ciencias Naturales B. Rivadavia, Ciudad Autónoma de Buenos Aires, Argentina
c. Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
d. Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología e Instituto de Nanobiotecnología UBA-CONICET, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
e. Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Argentina

* Corresponding author.
E-mail address: wmac@ffyb.uba.ar (W.P. Mac Cormack).

Received 30 March 2015; accepted 23 April 2015
Available online 30 June 2015

© 2015 Published by Elsevier España, S.L.U. on behalf of Asociación Argentina de Microbiología. This is an open access articleunder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 

Bacterioplankton is a relevant component of coastal marine food webs. In Antarctica, environmental conditions strongly limit the growth rates and metabolic activity of the biota. Macroalgae, such as the large perennial brown algae Desmarestia anceps Montagne (Fig. 1), are one of the main primary producers in this environment. The organic matter released as a result of the death and decomposition of these macroalgae is considered a key event in the supply of nutrients to other components of the Antarctic marine biota.4,5 Some bacteria associate to algal debris and directly obtain from it inorganic and organic nutrients for their own growth. During this activity, significant amount of organic molecules (proteins, carbohydrates and organic acids) are released into the marine environment, constituting the dissolved organic matter (DOM) stock, which is unavailable to most marine organisms but can be used by a fraction of the bacterioplankton as a carbon and energy source.3 This trophic pathway is known as the “microbial loop” and allows dissolved organic carbon (DOC) to return to higher trophic levels via its incorporation into bacterial biomass.1 The microbial loop is coupled with the classic food chain formed by phytoplankton-zooplankton-nekton.


Figure 1. Huge mats of the dominant macroalgae D. anceps inhabit the coastal rocky substrates of Potter Cove, 25 de Mayo (King George) Island, South Shetland Islands, Antarctica. Although the fate of the different fractions of the biomass flux released by senescent individuals of these macroalgae is not yet well known, it is likely that they greatly impact on nutrient cycling dynamics in Antarctic coastal marine ecosystems.

In Antarctic marine environments, the time for decomposition and the physical mechanisms required for an effective biodegradation of algal debris is not fully understood. However, the association of marine bacteria to D. anceps thallus can be clearly appreciated in the SEM images (Fig. 2) obtained from initial studies on bacteria-related algal degradation in the Potter Cove ecosystem. Preliminary results showed that viable heterotrophic bacterial numbers increased over time during algal degradation. Nevertheless, the time required for a significant microbial-mediated damage of extremely long thalli at the typical sea water temperatures of the Cove (∼1–2 °C) and its effectiveness closely depends on the prior mechanical breakdown mediated by icebergs and stones, which are driven by strong winds, currents and tides.2


Figure 2. Bacteria associated to debris of macroalgae D. anceps. Detail of different parts of thalli (a). Apical regions of D. anceps thalli (b). When macroalgal thalli are mechanically damaged by the abrasion of sea ice and stones, the components of their cell walls are exposed (c) and the cavities of dead cells are colonized by a great number of bacteria, probably obtaining and releasing inorganic and organic nutrients from cell debris (d).

Ethical disclosures

Protection of human and animal subjects

The authors declare that no experiments were performed on humans or animals for this study.

Confidentiality of data

The authors declare that no patient data appear in this article.

Right to privacy and informed consent

The authors declare that no patient data appear in this article.

Acknowledgements

This work was supported by grants PICTO 2010-0124 from the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), PIP 0187 from CONICET and UBA 20020100100378 from Universidad de Buenos Aires. We thank the Carlini Station crew for their assistance.

References

1. Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F. The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser. 1983; 10:257-63.         [ Links ]

2. Brouwer PEM. Decomposition in situ of the sublittoral Antarctic macroalgae Desmarestia ancepsMontagne. Polar Biol. 1996; 16:129-37.         [ Links ]

3. Nędzarek A, Rakusa-Suszczewski S. Decomposition of macroalgae and the release of nutrient in Admiralty Bay, King George Island, Antarctica. Polar Biosci. 2004; 17:26-35.

4. Quartino ML, Boraso de Zaixso AL.  Summer macroalgal biomass and production in Potter Cove (South Shetland, Antarctica): its ecological signification. Polar Biol. 2008; 31:281-94.         [ Links ]

5. Quartino ML, Boraso de Zaixso A, Momo FR.  Macroalgal production and the energy cycle of Potter Cove. Rep Polar Mar Res. 2008; 571:68-74.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons