SciELO - Scientific Electronic Library Online

 
vol.26 número2SOCIAL STRUCTURE OF LAHILLE’S BOTTLENOSE DOLPHIN Tursiops truncatus gephyreus (CETACEA: DELPHINIDAE) OFF THE URUGUAYAN MARINE COASTGENETIC ANALYSES SUGGEST BURROW SHARING BY RÍO NEGRO TUCO-TUCOS (Ctenomys rionegrensis) índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

  • Não possue artigos citadosCitado por SciELO

Links relacionados

Compartilhar


Mastozoología neotropical

versão impressa ISSN 0327-9383versão On-line ISSN 1666-0536

Mastozool. neotrop. vol.26 no.2 Mendoza jun. 2019  Epub 17-Dez-2019

 

ARTÍCULOS

FIRST RECORD OF Glyphonycteris sylvestris THOMAS, 1896 (CHIROPTERA: PHYLLOSTOMIDAE: GLYPHONYCTERINAE) FOR ARGENTINA, WITH COMMENTS ON ITS KARYOTYPE

Primer registro de Glyphonycteris sylvestris Thomas, 1896 (Chiroptera: Phyllostomidae: Glyphonycterinae) para Argentina, con comentarios sobre su cariotipo

Mariano S Sánchez1  2  8 

Carolina A Labaroni3  4  9 

Francisco X Castellanos Insuasti5 

Diego Baldo6  7  10 

1Instituto de Biología Subtropical (IBS)-nodo Posadas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

2Universidad Nacional de Misiones (UNaM)

8Laboratorio de Genética Evolutiva, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones (UNaM)

3Instituto de Biología Subtropical (IBS)-nodo Posadas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

4Universidad Nacional de Misiones (UNaM)

9Laboratorio de Genética Evolutiva, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones (UNaM)

5Laboratorio de Genética Evolutiva, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones (UNaM)

6Instituto de Biología Subtropical (IBS)-nodo Posadas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

7Universidad Nacional de Misiones (UNaM)

10Laboratorio de Genética Evolutiva, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones (UNaM)

Abstract

Glyphonycteris is a poorly known genus of bats that inhabit lowlands and forested mountains of Central and South America. This genus comprises three nominal species, with G. sylvestris being themost widely distributed species in South America. The karyological data previously available for this genusare restricted to those resulting from conventional staining techniques applied to a few specimens from Surinam. Here, we report the first record of G. sylvestris in Argentina extending its southern distribution. Moreover, our new locality represents the seventh record from the Atlantic Forests Biome and the first from Araucaria Moist Forest ecoregions. Our specimen overall exhibits the diagnostic characteristics described for the species except for some differences in the distribution of hairs on the wings and limbs. The fecal sample obtained from our specimen contained only seeds of Piper aduncum. The karyotype was 2n = 22 with a FN = 42; the analysis of fluorochrome banding patterns in the chromosomal pericentromeric regions shows DAPI (4,6-diamidino-2-phenylindole) positive blocks in pairs 5 and 8, whereas pericentromeric regions stained with CMA3. (Chromomicine A3) are positive in pairs 1, 2, 3, 4 and 11. Moreover, the interstitial region of chromosomes shows DAPI and CMA3 positive blocks in pairs 1, 2, 3, 4 and 5. These karyological data are novel to G. sylvestris, contributing to the scarce knowledge of the genus. Thus, filling blanks of information and enabling further comparative chromosome analysis.

Palabras clave Bosque Húmedo de Araucaria; cromomicina; DAPI; dieta; distribución

Resumen

Glyphonycteris es un género poco conocido de murciélago que habita los bosques de tierras bajas y de montañas de Centroamérica y Sudamérica. Este género incluye tres especies nominales; donde G. sylvestris es la más ampliamente distribuida al sur de Sudamérica. Los datos de cariotipo para este género están restringidos a técnicas de tinción convencional realizadas sobre unos pocos especímenes de Surinam. En este trabajo se presenta el primer registro de G. sylvestris en Argentina extendiendo su distribución sur. Además, esta nueva localidad representa el séptimo registro para el Bioma del Bosque Atlántico y el primero para la ecorregión de los Bosques Húmedos de Araucaria. Nuestro espécimen exhibe los caracteres diagnósticos para la especie excepto por algunas diferencias en la distribución de los pelos en alas y miembros. La muestra fecal obtenida de nuestro espécimen solo contenía semillas de Piper aduncum. El cariotipo tuvo un 2n = 22 y FN = 42; los patrones de bandeo con fluorocromos en la región pericentromérica muestra bloques de DAPI (4,6-diamino-2-fenilindol) positivo en los pares 5 y 8, mientras que las regiones pericentroméricas teñidas con CMA3 (Chromomicina A3) son positivas en los pares 1, 2, 3, 4 y 11. Además, en las regiones intersticiales de los cromosomas se observaron bloques DAPI y CMA3 positivos en los pares 1, 2, 3, 4 y 5. Estos datos cariológicos son novedosos para G. sylvestris contribuyendo al escaso conocimiento del género. Por ende, llenan un vacío de información que permitiría futuros análisis cromosómicos comparativos.

Palabras clave Bosque Húmedo de Araucaria; cromomicina; DAPI; dieta; distribución

INTRODUCTION

GlyphonycterisThomas, 1896 is a poorly known genus of New World leaf-nosed bats that inhabit lowland and mountain forests of Central and South America (Williams & Genoways 2007; Zortea et al. 2008; Tirira et al. 2016; Solari 2018). This genus comprises gleaning foraging bats that are less frequently collected in studies using mist net or harp trap and are therefore poorly represented in museums (Simmons & Voss 1998; Pedro et al. 2001; Sampaio et al. 2003; Gregorin & Rossi 2005). Glyphonycteris and other related genera, such as Lampronycteris, Neonycteris, and Trinycteris, were traditionally treated as subgenera of Micronycteris after Sanborn’s (1949) revision. However, this taxonomic arrangement was frequently questioned due to the paraphyly of Micronycteris (see Simmons 1996; Simmons & Voss 1998; Wetterer et al. 2000). In a taxonomic revision of the mammals of Paracou, Simmons & Voss (1998) included Barticonycteris daviesi (Hill 1965) in Glyphonycteris; the authors recognized it as a full genus and provided an emended diagnosis. More recently, several molecular phylogenetic analyses recovered Glyphonycteris + Trinycteris as a sister clade of Carollia (Baker et al. 2002; 2003; 2012; 2016; Amador et al. 2018). In this phylogenetic context, Baker et al. (2012; 2016) proposed and diagnosed the subfamily Glyphonycterinae in which the authors included Glyphonycteris, Trinycteris, and Neonycteris,and suggested that the observed morphological similarities with Micronycteris and Macrotus represent plesiomorphic features.

Currently, Glyphonycteris comprises three nominal species: Glyphonycteris behnii (Peters 1865), G. daviesi (Hill 1965), and G. sylvestris (Thomas 1896) (Simmons 2005). Glyphonycteris behnii is a rare species that has been suggested to be a senior synonym of G. sylvestris (Simmons & Voss 1998) and it is only known by two specimens from Cuzco in Peru, one from Mato Grosso and one from Minas Gerais in Brazil (Andersen 1906; Peracchi & Albuquerque 1985). Glyphonycteris daviesi, the largest of the genus (forearm 53.8–58.1 mm and skull over 25.0 mm; Williams & Genoways 2007), is distributed in Central America (Honduras, Costa Rica and Panama), island of Trinidad and South America (Venezuela, Colombia, Guiana, Surinam, French Guiana, Brazil, Ecuador, Peru, and Bolivia; Williams & Genoways 2007; Morales-Martínez & Suárez-Castro 2014). Lastly, G. sylvestris, the typespecies of the genus (Thomas 1896, b:301), is also the smallest species (forearm 38.0–44.0 mm and the skull less than 22.0 mm; Williams & Genoways 2007), and inhabits Central America (Mexico, Panama and Costa Rica) and northern South America (Colombia, Venezuela, Trinidad and Tobago, Surinam, French Guiana, Ecuador, and Peru; Williams & Genoways 2007; Datzman et al. 2010; Morales-Martínez & Suárez-Castro 2014; Tirira et al. 2016). Additional populations were reported from Atlantic Forests Ecoregion Complex in southeastern Brazil, with a few records from Minas Gerais, Rio de Janeiro, São Paulo, and Paraná States (Trajano 1982; Sekiama et al. 2001; Pedro et al. 2001; Dias et al. 2003; Tavares et al. 2010), including a new record from the Cerrado in the Tocantins state (Felix et al. 2016).

Cytogenetic studies of bats from the family Glyphonycterinae are scarce, and the karyotype of only three species has been previously studied with the use of conventional chromosome staining techniques (Baker & Hsu 1970; Patton 1976; Honeycutt et al. 1980; Baker et al. 1982). Karyological data are restricted to just one specimen of G. daviesi from Surinam with 2n = 28 chromosomes and autosomal fundamental number FN = 52 described from one specimen (Honeycutt et al. 1980; Baker et al. 2016), whereas 2n = 22 chromosomes and FN = 36 was described from seven female specimens of G. sylvestris (Honeycutt et al. 1980). Other cytogenetic methods such as staining with different base-specific fluorochromes to determine DNA sequence composition (banding technique) have not been employed for species of Glyphonycteris, evidencing the lack of knowledge of this genus of bats.

Fig. 1 Location of records of Glyphonycteris sylvestris in the Atlantic forests from Brazil (1-6) and a new record for Argentina (7). All numbered localities are listed in Table 2.  

Here, we report the first record of G. sylvestris in Argentina and in the Araucaria Moist Forest ecoregion extending its latitudinal distribution. In addition, the goals of this study were to examine dental features, external and skull measurements of our specimen, and compare them with information of bats of this species from other tropical sites. We described for the first time the karyotype for G. sylvestris from the Atlantic Forest populations and compared our results with the available information.

MATERIALS AND METHODS

The study site was located in Parque Provincial El Piñalito, 19.5 km NE of Cruce Caballero along National Route 14, Department of San Pedro (26° 25’ 41.28"S, 53° 50’ 39.6" W, 762 m a.s.l.; Fig. 1), northeast of Misiones Province, Argentina, in the Araucaria Moist Forests. This forest is one of the 15 terrestrial ecoregions that compose The Atlantic Forests Global 200 Ecoregion (hereafter “Atlantic Forest”) (Dinerstein et al. 1995; Olson et al. 2001). In Argentina, the Araucaria Moist Forest forms a narrow belt along the Sierra of Misiones in the center and northeast of Misiones province (Giraudo et al. 2003). The forest canopy is characterized by the presence of conifer trees (Araucaria angustifolia; Araucariaceae). The subcanopy is characterized by Nectandra megapotamica (Lauraceae), Balfourodendron riedelianum (Rutaceae), Cordia americana (Boraginaceae), Diatenopteryx sorbifolia (Sapindaceae), Parapiptadenia rigida and Myrocarpus frondosus (Fabaceae). Understory is characterized by Alsophila setosa (Cyatheaceae), Piper (Piperaceae), Sorocea bonplandii (Moraceae), Trichila (Meliaceae), Psichotria, Ixora (Rubiaceae) and ferns were dominant in the herbaceous stratum. Vascular epiphytes such as ferns, cacti (Lepismium and Rhipsalis), and bromeliads are abundant (Cabrera 1976). The climate is hot and wet, with mean maximum temperature of 17.7 °C, and only mildly seasonal, since the annual rainfall (1921 mm) is distributed rather uniformly throughout the year (data estimated from Worldclim using DIVA-GIS, version 4.2; Hijmans et al. 2005).

We deployed 10 mist-nets/night at the same sampling site from 6 to 9 March 2016. Nets were placed at the ground level up to the subcanopy level (6–8 m high) inside the forest, in flight pathways, riparian forest and forest edge. Mist nets were left opened for approximately 6 h from sunset and were checked every 30 min. Each captured bat was removed from the net and placed in cloth bags for data collection and identification; taxonomic treatment follows Gardner (2007). Bats were marked on the back by trimming the hair to avoid overestimation of the catches and were released near the capture site. Fecal samples were obtained from the bags and the bats handled in the net, and each sample was preserved as an individually labelled dry pellet. The plant dietary items were identified using a reference collection of seeds that was initiated by Giannini (1999) and continued by Sánchez et al. (2012) and Sánchez & Dos Santos (2015).

Voucher specimen was preserved as skin, skull and skeleton after recording the basic external measurements, and finally housed in the Mammal Collection of the Laboratorio de Genética Evolutiva (CM-LGE) of the Instituto de Biología Subtropical (IBS)-nodo Posadas, CONICET-UNaM.

Specimen was collected under permit obtained from the Ministerio de Ecología y Recursos Naturales Renovables of Misiones Province (Collection Permit N° 002/2016).

External and cranial measurements were taken using a digital caliper of 0.01 mm sensitivity DIGIMESS© (Buenos Aires, Argentina) and body mass to the nearest 0.5 g using a spring scale PESOLA TM (Baar, Switzerland). Measurements follow Simmons & Voss (1998), and Giménez & Giannini (2016) (Table 1) and include: weight (g); total length; tail length; hindfoot length; ear length; forearm length; tibia length; greatest length of skull excluding incisors; condyleincisive length; postorbital breadth; zygomatic breadth; braincase breadth; mastoid breadth; length of maxillary toothrow; length of palatal; breadth across upper molars; width across upper canines; length of mandible; length of mandibular toothrow.

Mitotic chromosomes were obtained from drip of cell suspension from bone marrow of one female specimen using the cell suspension technique, after in vivo injection of colchicine, following Ford & Hamerton (1956). Twenty metaphase spreads were selected in order to perform the karyotype characterization. This characterization was performed using different staining techniques: conventional staining with Giemsa 10% (Ford & Hamerton 1956), and differential staining with fluorochromes DAPI (4,6-diamidino2-phenylindole), and CMA3 (Chromomycin A3) to identify regions rich in AT and GC base pairs, respectively (Schweizer 1976; 1980). Diploid number (2n) and fundamental number (FN) were calculated on conventionally stained metaphases using photomicrographs obtained with an Olympus BX50 epifluorescent photomicroscope equipped with Sony Exwave-Had digital camera. Subsequently, ten metaphases were used for the construction of an idiogram using Drawid V0.26 software (Kirov et al. 2017).

Table 1 External and cranial measurements (in mm) of the specimen of Glyphonycteris sylvestris (CM-LGE 200) reported here, compared to specimens reported by Dias et al. (2003) for Brazil; Tirira et al. (2016) for Ecuador; Simmons & Voss (1998) for French Guiana; Morales-Martínez & Suárez-Castro (2014) for Colombia; Jones & Carter (1976) for Panama; Thomas (1896), Andersen (1906), Goodwing & Greenhall (1964) for Costa Rica; Goodwin & Greenhall (1961), Goodwing & Greenhall (1964) for Trinidad and Mexico. Institutional abbreviations are: CM-LGE, Mammal Collection of the Laboratorio de Genética Evolutiva of the Instituto de Biología Subtropical, Universidad Nacional de Misiones; ALP, Collections of Adriano Lúcio Peracchi from the Instituto de Biologia da Universidade Federal do Rio do Janeiro; QCAZ, Mammal Division of Museo de Zoología de la Pontificia Universidad Católica del Ecuador; AMNH, American Museum of Natural History; ICN, Instituto de Ciencias Naturales Universidad Nacional de Colombia; USNM, Natural Museum of Natural History; BM, British Museum (Natural History). Measurements are expressed as the mean standard deviation for specimens from Trinidad and Mexico. LMnT: Length of mandibular toothrow. LMxT: Lengthof maxillary toothrow. WAUC: Width across upper canines. 

RESULTS AND DISCUSSION

We obtained the first record of Glyphonycteris sylvestris for Argentina, which is an adult female without evidence of reproductive activity, captured at 19:30 in a ground-level mist net placed in a forest edge. Simultaneously, we also captured individuals of Artibeus lituratus, A. fimbriatus, Pygoderma bilabiatum, and Sturnira lilium. Our specimen shares the diagnostic external characters for this species as described by Thomas (1896), Simmons & Voss (1998), and Williams & Genoways (2007): short and pointed ear, with the lower part of the outer edge ending in a low rounded lobule, and with a concavity on the posterior border near the tip, short fur (2.71 mm) at the external surface of the leading edge of the ear, ventral margin of narial horseshoe grading gradually into upper lip, interauricular band absent, chin with a pair of dermal pads arranged in a "V", with no central papilla, calcar shorter than hindfoot, soft and fine fur, smoky to dark gray and tricolored dorsally, and gray fur on its ventral side. However, unlike Thomas’ description, the dorsal fur of our specimen extends to wings and limbs, including pollical metacarpals and first finger. Forearm hairs extend to approximately up to one third of this bone, and a thin tuft of hairs cover the hind limb dorsally. Tail is short but it does not perforate the interfemoral membrane on its upper surface as in the type specimen (see Thomas 1896).

Like previous descriptions (e.g., Goodwin & Greenhall 1961; Simmons & Voss 1998) the skull of our specimen has two pairs of upper incisors, outer incisors reduced and hidden by cingulum of canine, low incisors trifid with crown height approximately equal to crown width, P3 and P4 subequal in crown height, P3 molariform with well-developed lingual cingulum and cusp, P4 with lingual cingulum of convex outline, edge not raised, and lingual cusp well developed (Fig. 2), upper canine much less than twice the height of the inner upper incisor, lower premolars aligned in row on mandible, coronoid process low with little slope along dorsal margin. The skull has a domed braincase, without sagittal crest, divided into single or two raised ridges, as in specimens from Trinidad and Ecuador (see Goodwin & Greenhall 1961; Tirira et al. 2016), rostrum and anterior orbital region of skull inflated, the dorsum of the rostrum is flat, the basisphenoid pits are deep, and mastoid breadth is shorter than zygomatic breadth. All measurements of our specimen fall within the range of size variation reported for specimens from Mexico, Trinidad and Panama (Goodwing & Greenhall 1964), French Guiana (Simmons & Voss 1998), Colombia (Morales-Martínez & Suárez-Castro 2014), Ecuador (Tirira et al. 2016) and Brazil (Dias et al. 2003) (Table 1).

Fig. 2 Dorsal, ventral, lateral and frontal views of the skullof the female specimen of Glyphonycteris sylvestris (CMLGE200) captured in Parque Provincial El Piñalito. Notethe skull with domed braincase without sagittal crest, and the pair of incisors reduced and hidden by canine cingulum. See Table 1 for measurements. Scale = 5 mm. 

This is the southernmost record for this species, and the first from the Araucaria Moist Forest ecoregions. Despite the scarce records throughout its distribution, G. sylvestrisis widely distributed and occurs in different ecoregions, from 45 to 1476 m a.s.l (e.g., Simmons & Voss 1998; Tirira et al. 2016). This species was recorded in 12 ecoregions from the northern populations of South America, four ecoregions from the southern populations of the Atlantic forest (Table 2), and in a moist forest relict in the Cerrado, between the northern and southern populations (Felix et al. 2016). This broad distribution suggests that G. sylvestris would be flexible in habitat use and highly tolerant to different environmental conditions. Populations from Cerrado might indicate a historical connection between both tropical populations, which should be tested in the future by biogeographical analyzes.

Table 2 Occurrences of Glyphonycteris sylvestris in the Atlantic Forest ecoregion. Each locality was assigned to an ecoregion according to the World Wildlife Fund (WWF). Locality number matches geographical location on map in Fig. 1

The fecal sample obtained from the Argentine specimen only contained plant material, including seeds of Piper aduncum. Glyphonycteris +Trinycteris has always been recovered as the sister clade of Carollia (see Baker et al. 2012; Rojas et al. 2016; Amador et al. 2018). Both Glyphonycteris and Trinycteris are insectivores that include plant material in their diets, whereas Carollia and successive branches in the phyllostomid tree (e.g., Rhinophyllinae and Stenodermatinae) are obligate frugivores. This suggests that frugivory strategies evolved from the feeding strategy of a basal insectivore (Baker et al. 2012). Piper is the main resource of Carollia throughout the Neotropics (e.g., Lobova et al. 2009) and their mutualistic interaction was associated with the phylogeny and evolution of this basal linage of frugivorous bats (Sánchez & Giannini 2018). Thus, the use of Piper by G. sylvestris could indicate that its diet may be related to a phylogenetic constraint due to its affinity to the Carolliinae clade (see Sánchez & Giannini 2018).

The diploid chromosome number of our Glyphonycteris sylvestris specimen is 2n = 22, and the fundamental number (including the chromosomal sex pair) FN = 42. Almost all chromosomes of the complement are biarmed, except for one pair of small acrocentric chromosomes (Fig. 3). Although this description agrees, in general, with that found in the literature for G. sylvestris, we observed a single pair of acrocentric chromosomes instead of two, as described by Honeycutt et al. (1980).

Fig. 3 Female karyotype of Glyphonycteris sylvestris (CM-LGE 200) with 2n = 22; FN = 42. a) Giemsa-stained mitotic chromosomes; b) fluorochrome DAPI staining; c) fluorochrome Chromomicine A3 staining. Scale = 10 µm. 

This implies a change in the fundamental number described previously for G. sylvestris, from FN = 40 to FN = 42. These discrepancies seem to be due to different criteria in the assignment of chromosomes, since we also detected one acrocentric chromosome in the figure of Honeycutt et al. (1980). It was also considered by Honeycutt et al. (1980) that because the closely related species Glyphonycteris daviesi and Trinycteris nicefori have biarmed sexual chromosomes (Patton & Baker 1978; Honeycutt et al. 1980), the sexual pair XX would be a biarmed element. Nevertheless, we cannot discuss that as we have not analyzed male specimens. The analysis of fluorochrome banding patterns in the chromosomal pericentromeric regions shows DAPI positive blocks in pairs 5 and 8, whereas pericentromeric regions stained with CMA3 are positive in pairs 1, 2, 3, 4 and 11. Moreover, the interstitial region of chromosomes shows DAPI and CMA3 positive blocks in pairs 1, 2, 3, 4 and 5 (Fig. 3 and 4).

Fig. 4 Haploid idiogramof Glyphonycteris sylvestris. Fluorochrome DAPI and Chromomycin A3 positive bandsare shown in blue and green respectively. Grey corresponds toneutral regions. 

Among the phyllostomids, diploid chromosome numbers are highly variable, with karyotypes ranging from 2n = 14 to 2n = 46 chromosomes in 106 studied species (see Sotero-Caio et al. 2017 and references therein). In Glyphonycterinae only the conventional karyotypes of Trinyicteris nicefori, Glyphonycteris davesi (both with 2n = 28, NF = 52), and G. sylvestris (2n = 22) are known (Patton & Baker 1978; Honeycutt et al. 1980, this work). To date, a 2n = 22 karyotype seems to be unique within Glyphonycterinae, and although two species in the sister clade Carolliinae (Carollia benkeithi and C. castanea; Solari & Baker 2006) share this diploid number, both karyotypeshave clear differences in chromosomal morphology, and different rearrangements would be involved. The fluorochrome bands of G. sylvestris presented here are the first for Glyphonycterinae and the lack of data for related species limits comparisons at this time. Thus, it would be of high interest to develop further molecular cytogenetic studies thatcould help understand chromosomal evolution froma phylogenetic perspective in Glyphonycterinae.

Acknowledgments

We thank the staff of Ministerio de Ecología y Recursos Naturales Renovables of Misiones province, Argentina, for fieldwork permits and logistical support. We thank Roman M. Sánchez for his help with figure preparation and editing. The study was supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) through the research grants PICT2013-2759 and PICT2016-0608 assigned to MSS and DJB. This manuscript was greatly improved with comments from Valeria Tavares, the Associate Editor, and one anonymous reviewer, to whom we thank especially.

REFERENCIAS

B01 Amador, L. I., R. L. Moyes Arévalo, F. C. Almeida, S. A. Catalano, & N. P. Giannini. 2018. Bat Systematics in the Light of Unconstrained Analyses of a Comprehensive Molecular Supermatrix. Journal of Mammalian Evolution 25:37-70. https://doi.org/10.1007/s10914-016-9363-8Links ]

B02 Andersen, K. 1906. On the bats of the genera Micronycteris and Glyphonycteris. Annals and Magazine of Natural History 18:50-65. https://doi.org/10.1080/00222930608562579Links ]

B03 Baker, R. J., & T. Hsu. 1970. Further studies on the sex-chromosome systems of the American leaf-nosed bats (Chiroptera, Phyllostomatidae). Cytogenetic and Genome Research 9:131-138. https://doi.org/10.1159/000130083Links ]

B04 Baker, R. J., M. Haiduk, L. W. Robbins, A. Cadena, & B. Koop. 1982. Chromosomal studies of South American bats and their systematic implications. Mammalian Biology in South America (M. A. Mares & H. H. Genoways, eds.). The Pymatuning Symposia in Ecology, Special Publications Series, Pittsburgh. https://doi.org/10.2307/1380542Links ]

B05 Baker, R. J., O. R. P. Bininda-Emonds, H. Mantilla-Meluk, C. A. Porter, & R. A. Van Den Bussche. 2012. Molecular timescale of diversification of feeding strategy and morphology in New World leaf-nosed bats (Phyllostomidae): a phylogenetic perspective. Evolutionary history of bats fossils, molecules and morphology (G. F. Gunnell & N. B. Simmons, eds.). Cambridge University Press, New York. https://doi.org/10.1017/cbo9781139045599.012Links ]

B06 Baker, R. J., S. R. Hoofer, C. A. Porter, & R. A. Van Den Busche. 2003. Diversification among New World leaf-nosed bats: an evolutionary hypothesis and classification inferred from digenomic congruence of DNA sequence. Occasional papers, Museum of Texas Tech University 230:1-32. https://doi.org/10.5962/bhl.title.156931Links ]

B07 Baker, R. J., S. Solari, & F. G. Hoffmann. 2002. A new Central American species from the Carollia brevicauda complex. Occasional papers, Museum of Texas Tech University 217:1-12. https://doi.org/10.5962/bhl.title.156831Links ]

B08 Baker, R. J., S. Solari, A. Cirranello, & N. B. Simmons. 2016. Higher level classification of phyllostomid bats with a summary of DNA Synapomorphies. Acta Chiropterologica 18:1-38. https://doi.org/10.3161/15081109acc2016.18.1.001Links ]

B09 Cabrera, A. L. 1976. Regiones fitogeográficas Argentinas. Enciclopedia Argentina de Agricultura y Jardineria. Segunda Edicion. Editorial ACME, Buenos Aires. [ Links ]

B10 Datzman, T., O. Vonhelversen, & F. Mayer. 2010. Evolution of nectarivory in Phyllostomid bats (Phyllostomidae Gray, 1825, Chiroptera: Mammalia). BMC Evolutionary Biology 10:1-14. https://doi.org/10.1186/1471-2148-10-165Links ]

B11 Dias, D., S. S. Pereira Da Silva, & A. L. Pereacchi. 2003. Ocorrência de Glyphonycteris sylvestris Thomas (Chiroptera, Phyllostomidae) no Estado do Rio de Janeiro, sudeste do Brasil. Revista Brasileira de Zoologia 20:365-366. https://doi.org/10.1590/s0101-81752003000200030Links ]

B12 Dinerstein, E. et al. 1995. A Conservation Assessment of the Terrestrial Ecoregions of Latin America and the Caribbean. World Bank, Washington, DC. [ Links ]

B13 Felix, S., R. L. M. Novaes, R. F. Souza, & L. S. Avilla. 2016. Bat assemblage in a karstic area from northern Brazil: seven new occurrences for Tocantins state, including the first record of Glyphonycteris sylvestris Thomas, 1896 for the Cerrado. Check List 12:1-13. https://doi.org/10.15560/12.6.1999Links ]

B14 Ford, C. E., & J. L. Hamerton. 1956. A colchicine, hypotonic citrate, squash sequence for mammalian chromosomes. Stain Technology 31:247-251. https://doi.org/10.3109/10520295609113814Links ]

B15 Gardner, A. L. 2007. Order Chiroptera Blumenbach, 1779. Mammals of South America, Volume 1 (A. L. Gardner, ed.). The University of Chicago Press, Chicago. [ Links ]

B16 Giannini, N. P. 1999. Selection of diet and elevation by sympatric species of Sturnira in an Andean rainforest. Journal of Mammalogy 80:1186-1195. https://doi.org/10.2307/1383169Links ]

B17 Giménez, A. L., & N. P. Giannini. 2016. Morphofunctional segregation in molossid bat species (Chiroptera: Molossidae) from the South American Southern Cone. Hystrix, the Italian Journal of Mammalogy 27:1-11. [ Links ]

B18 Gimenez, E. A., & H. Ferrarezzi. 2004. Diversidade de morcegos no sudeste da Mata Atlântica. Estação Ecológica Juréia-Itatins: ambiente físico, flora e fauna (O. A. V. Marques & W. Duleba, eds.). Editora Holos, Ribeirão Preto. [ Links ]

B19 Giraudo, A. et al. 2003. Biodiversity Status of the Interior Atlantic Forest of Argentina. The Atlantic Forest of South America. Biodiversity Status, Threats, and Outlook (C. Galindo-Leal & I. de Gusmao Camara, eds.). Island Press, Washington, DC. https://doi.org/10.1007/s10980-005-1788-zLinks ]

B20 Goodwing, G., & A. M. Greenhall. 1964. New records of bats from Trinidad and comments on the status of Molossus trinitatis Goodwin. American Museum Novitates 2195:1-23. [ Links ]

B21 Goodwin, G. G., & A. M. Greenhall. 1961. A review of the bats of Trinidad and Tobago: descriptions, rabies infection, and ecology. Bulletin of the American Museum of Natural History 122:187-302. https://doi.org/10.2307/1377397Links ]

B22 Gregorin, R., & R. Rossi. 2005. Glyphonycteris daviesi (Hill, 164), a rare Central American and Amazonian bat recorded for Eastern Brazilian Atlantic Forest (Chiroptera, Phyllostomidae). Mammalia 69:427-430. https://doi.org/10.1515/mamm.2005.035Links ]

B23 Hijmans, R., L. Guarino, P. Mathur, & A. Jarvis. 2005. DIVA-GIS Version 4.2. Available at: http://www.diva-gis.org/downloadLinks ]

B24 Honeycutt, R. L., R. J. Baker, & H. H. Genoways. 1980. Results of the Alcoa Foundation-Suriname Expeditions III. Chromosomal data for bats (Mammalia: Chiroptera) from Suriname. Annals of Carnegie Museum 49:237-250. https://doi.org/10.2992/0097-4463(2005)74[225:ROTAFE]2.0.CO;2Links ]

B25 Jones, J. K., & D. D. Carter. 1976. Annotated checklist, with keys to subfamilies and genera. Part I. Biology of bats of the New World family Phyllostomatidae (R. J. Baker, J. K. Jones & D. C. Carter Jr., eds.). Special Publications of the Museum, Texas Tech University 10:1-218. https://doi.org/10.5962/bhl.title.142603Links ]

B26 Kirov, I. et al. 2017. DRAWID: user-friendly java software for chromosome measurements and idiogram drawing. Comparative Cytogenetics 11: 747–757. doi:10.3897/compcytogen.v11i4.20830 [ Links ]

B27 Lobova, T. A., C. K. Geiselman, & S. A. Mori. 2009. Seed dispersal by bats in the Neotropics. The New York Botanical Garden, New York. [ Links ]

B28 Morales-Martínez, D. M., & A. F. Suárez-Castro. 2014. New records for Glyphonycteris Thomas, 1896 (Chiroptera: Phyllostomidae) from Colombia.Check List 10:639-644. https://doi.org/10.15560/10.3.639Links ]

B29 Olson, D. M. et al. 2001. Terrestrial Ecoregions of the World: a new map of life on earth. BioScience 51:933-938. [ Links ]

B30 Patton, J. C. 1976. Evolutionary implications of the G-Banded and C-Banded Karyotypes of Phyllostomatoid bats. Master of Science Thesis. Graduate Faculty of Texas Tech University, Lubbock, United States of America. [ Links ]

B31 Patton, J. C., & R. J. Baker. 1978. Chromosomal homology and evolution of phyllostomatoid bats. Systematic Zoology 27:449-462. https://doi.org/10.2307/2412927Links ]

B32 Pedro, W. A., F. C. Passos, & B. K. Lim. 2001. Morcegos (Chiroptera, Mammalia) da Estação Ecológica dos Caetetus, estado de São Paulo. Chiroptera Neotropical 7:136-140 [ Links ]

B33 Peracchi, A. L., & S. T. Albuquerque. 1985. Considerações sobre a distribução geografica de algunas espécies do genero Micronycteris Gray, 1866 (Mammalia, Chiroptcra, Phyllostomidae). Arquivos da Universidade Federal Rural do Rio de Janeiro 8:23-26. [ Links ]

B34 Rojas, D., O. M. Warsi, & L. M. Davalos. 2016. Bats (Chiroptera: Noctilionoidea) challenge a recent origin of extant Neotropical diversity. Systematic Biology 65:432-448. https://doi.org/10.1093/sysbio/syw011Links ]

B35 Sampaio, E., E. K. V. Kalko, E. Bernard, B. Rodríguez-Herrrera, & C. O. Handley Jr. 2003. A biodiversity assessment of bats (Chiroptera) in a tropical lowland rainforest of central Amazonia, including methodological and conservation considerations. Studies on Neotropical Fauna and Environment 38:17-31. https://doi.org/10.1076/snfe.38.1.17.14035Links ]

B36 Sanborn, C. C. 1949. Bats of the genus Micronycteris and its subgenera. Fieldiana Zoology 31:215-233. [ Links ]

B37 Sánchez, M. S., & D. A. Dos Santos. 2015. Understanding the spatial variations in the diets of two Sturnira bats (Chiroptera: Phyllostomidae) in Argentina. Journal of Mammalogy 96:1352-1360. https://doi.org/10.1093/jmammal/gyv144Links ]

B38 Sánchez, M. S., & N. P. Giannini. 2018. Trophic structure of frugivorous bats in the Neotropics: emergent patterns in evolutionary history. Mammal Review 48:90-107. https://doi.org/10.1111/mam.12116Links ]

B39 Sánchez, M. S., L. V. Carrizo, N. P. Giannini, & R. M. Barquez. 2012. Seasonal patterns in the diet of frugivorous bats in the subtropical rainforests of Argentina. Mammalia 76:269-275. https://doi.org/10.1515/mammalia-2011-0059Links ]

B40 Schweizer, D. 1976. Reverse Fluorescent Chromosome Banding with Chromomycin and DAPI. Chromosoma 58:307-324. https://doi.org/10.1007/bf00292840Links ]

B41 Schweizer, D. 1980. Simultaneous fluorescent staining of Rbands and specific heterochromatic regions (DA/DAPI bands) in human chromosomes. Cytogenetics and Cell Genetics 27:190-193. https://doi.org/10.1159/000131482Links ]

B42 Sekiama, M. L., N. R. Reis, A. L. Peracchi, & V. J. Rocha. 2001. Morcegos do Parque Nacional do Iguaçu, Paraná (Chiroptera, Mammalia). Revista Brasileira de Zoologia 18:749-754. https://doi.org/10.1590/s0101-81752001000300011Links ]

B43 Simmons, N. B. 2005. Order Chiroptera. Mammal species of the World: a taxonomic and geographic reference (D. E. Wilson & D. M. Reeder, eds.). The Johns Hopkins University Press, Baltimore. [ Links ]

B44 Simmons, N. B. 1996. A new species of Micronycteris (Chiroptera: Phyllostomidae) from Northeastern Brazil, with comments on phylogenetic relationships. American Museum Novitates 3158:134. [ Links ]

B45 Simmons, N. B., & R. S. Voss. 1998. The mammals of Paracou, French Guiana: a Neotropical lowland rainforest fauna. Bulletin of the American Museum of Natural History 237:1-219. https://doi.org/10.1206/0003-0090(2001)263<0003:tmopfg>2.0.co;2 [ Links ]

B46 Solari, S. 2018. Glyphonycteris daviesi. The IUCN Red List of Threatened Species 2018:e.T13377A22124873. http://dx.doi.org/10.2305/IUCN.UK.2018-2.RLTS.T13377A22124873.enLinks ]

B47 Solari, S., & R. J. Baker. 2006. Mitochondrial DNA sequence, Karyotypic, and Morphological variation in the Carollia castanea species complex (Chiroptera, Phyllostomidae) with description of a new species. Occasional papers, Museum of Texas Tech University 254:1-16. https://doi.org/10.5962/bhl.title.156889Links ]

B48 Sotero-Caio, C. G., R. J. Baker, & M. Volleth. 2017. Chromosomal evolution in Chiroptera. Genes 8:272. https://doi.org/10.3390/genes8100272Links ]

B49 Tavares, V. C., L. M. S. Aguiar, F. A. Perini, F. C. Falcão, & R. Gregorin. 2010. Bats of the state of Minas Gerais, southeastern Brazil. Chiroptera Neotropical 16:675-705. [ Links ]

B50 Thomas, O. 1896. XLVI.—On new small mammals from the Neotropical region. Annals and Magazine of Natural History: Series 6, 18:301-314. https://doi.org/10.1080/00222939608680459Links ]

B51 Tirira, D. G., M. A. Camacho, N. Tinoco, M. F. Solórzano, & S. F. Burneo. 2016. Genus Glyphonycteris Thomas, 1896 (Mammalia: Chiroptera) in Ecuador: first confirmed record of G. sylvestris Thomas, 1896 and a geographical review to G. daviesi (Hill, 1965). Check List 12:1-10. https://doi.org/10.15560/12.5.1965Links ]

B52 Trajano, E. 1982. New records of bats from southeastern Brazil. Journal of Mammalogy 63:529-531. https://doi.org/10.2307/1380462Links ]

B53 Wetterer, A. L., M. V. Rockman, & N. B. Simmons. 2000. Phylogeny of phyllostomid bats (Mammalia: Chiroptera): data from diverse morphological systems, sex chromosomes, and restriction sites. Bulletin of the American Museum of Natural History 248:1-248. https://doi.org/10.1206/0003-0090(2000)248<0001:POPBMC>2.0.CO;2 [ Links ]

B54 Williams, S. L., & H. H. Genoways. 2007. Subfamily Phyllostominae Gray, 1825. Mammals of South America, Volume 1 (A. L. Gardner, ed.). The University of Chicago Press, Chicago. [ Links ]

B55 Zortea, M., E. Sampaio, B. Lim, S. Peters, & J. Arroyo-cabrales. 2008. Glyphonycteris sylvestris. The IUCN Red List of Threatened Species 2008. [ Links ]

Recibido: 13 de Marzo de 2018; Aprobado: 17 de Diciembre de 2018