SciELO - Scientific Electronic Library Online

 
vol.27CONSERVATION PERSPECTIVES FOR A HIGHLY DISPARATE LINEAGE OF MAMMALS: THE XENARTHRAECOLOGICAL PHYSIOLOGY OF MAMMALS IN ARGENTINA: A DEVELOPING AND PROMISING FIELD índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

  • No hay articulos citadosCitado por SciELO

Links relacionados

Compartir


Mastozoología neotropical

versión impresa ISSN 0327-9383versión On-line ISSN 1666-0536

Mastozool. neotrop. vol.27  Mendoza  2020

 

Número aniversario

THE LAST 25 YEARS OF RESEARCH ON TERRESTRIAL CARNIVORE CONSERVATION IN ARGENTINA

Los últimos 25 años de investigación para la conservación de los carnívoros terrestres en Argentina

Últimos 25 anos de pesquisa em conservação de carnívoros terrestres em Argentina

Javier A Pereira1  2 

Patricia M Mirol3  4 

Mario S Di Bitetti5  6  7  8 

Andrés J Novaro9  10  11 

1Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” (MACN)

2Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

3Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” (MACN)

4Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

5Instituto de Biología Subtropical (IBS), Universidad Nacional de Misiones (UNaM)

6Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

7Asociación Civil Centro de Investigaciones del Bosque Atlántico (CeIBA)

8Facultad de Ciencias Forestales, UNaM

9Instituto de Investigación en Biodiversidad y Medioambiente (INIBIOMA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

10Universidad Nacional del Comahue

11Wildlife Conservation Society

Abstract

Twenty-seven species of terrestrial carnivores (Order Carnivora) inhabit Argentina, representing 10.0% and 38.6% of the global and Neotropical diversity of terrestrial carnivores, respectively. We evaluate the main topics of research on carnivores in Argentina over the past 25 years (1994-2018) considering the great conservation challenges the group faces. Feeding and spatial ecology, conflicts with livestock production, impacts of hunting and invasive species, and conservation genetics have been addressed for some of the more charismatic and larger-bodied carnivore species. Also, we identify thematic and taxonomic gaps and discuss what research we believe is important to deal with key conservation and management needs. Further studies are needed on topics like the ecological role of carnivores in ecosystems (including carnivores’ role in rewilding projects), mitigation methods to reduce conflict, conservation status of rare or less conspicuous species, and impacts of emerging threats like climate change, disease, and expansion of feral dog populations.

Palabras clave Carnivora; investigación; Neotrópico; retos de conservación

Resumen

Veintisiete especies de carnívoros terrestres (Orden Carnivora) habitan la Argentina, representando el 10.0% y el 38.6% de la diversidad global y neotropical de los carnívoros terrestres, respectivamente. Evaluamos los principales tópicos que han sido tema de investigación en carnívoros a lo largo de los últimos 25 años (1994- 2018) en el país, considerando los grandes desafíos de conservación que enfrenta el grupo. La ecología trófica y espacial, el conflicto con la producción ganadera, los impactos de la caza y las especies invasoras, y la genética de la conservación han sido abordados para algunas de las especies de carnívoros más grandes y carismáticas. Buscamos además identificar brechas temáticas y taxonómicas y discutir qué investigaciones creemos son importantes para abordar necesidades de conservación y manejo claves. Se necesitan más estudios sobre temas como el papel ecológico de los carnívoros en los ecosistemas (incluyendo el rol de los carnívoros en proyectos de restauración), métodos de mitigación para reducir conflictos, el estado de conservación de las especies raras o menos conspicuas y los impactos de amenazas emergentes, como el cambio climático, enfermedades o la expansión de las poblaciones de perros ferales.

Palabras clave Carnivora; investigación; Neotrópico; retos de conservación

Resumo

Vinte e sete espécies de carnívoros terrestres (Ordem Carnivora) habitam a Argentina, representando 10.0% e 38.6% da diversidade global e neotropical, respectivamente. Foram avaliados os principais tópicos de pesquisa sobre carnívoros na Argentina nos últimos 25 anos (1994-2018), considerando os maiores desafios de conservação que o grupo enfrenta. Ecologia alimentar e espacial, conflitos com a produção animal, impacto da caça e de espécies invasoras e genética da conservação foram abordados para algumas das maiores e mais carismáticas espécies de carnívoros. Além disso, foram identificadas lacunas temáticas e taxonômicas e discutidas quais pesquisas são consideradas importantes para lidar com as principais necessidades de conservação e manejo. São necessários mais estudos sobre tópicos como o papel ecológico dos carnívoros nos ecossistemas (incluindo o papel dos carnívoros em projetos de renaturalização de ecossistemas), métodos de mitigação para reduzir conflitos, estado de conservação de espécies raras ou menos conspícuas e impactos de ameaças emergentes, como mudanças climáticas, doenças e expansão de populações de cães selvagens.

Palavras-chave Carnivora; pesquisa; Neotropico; desafios de conservação

INTRODUCTION

The Neotropical region has the largest number of described mammal species worldwide (1617; Burgin et al. 2018). Of these, 269 species make up the Order Carnivora after aquatic families Odobenidae, Otariidae and Phocidae are excluded. Twenty-seven species of terrestrial carnivores (hereafter “carnivores”) inhabit Argentina (Teta et al. 2018), representing 10.0% and 38.6% of the global and Neotropical carnivore diversity, respectively (Burgin et al. 2018). The greatest diversity of native, extant carnivores in Argentina is concentrated in the Family Felidae (11 species), followed by Mustelidae (8), Canidae (5), Procyonidae (2) and Mephitidae (1) (Table 1).

Seven of the carnivore species present in Argentina are globally categorized as threatened by the IUCN, whereas eleven species are consid ered threatened at the national level (Table 1). Habitat loss, degradation and fragmentation, as well as harvesting are the main threats to mammals in Argentina (SAyDS & SAREM 2019). Understanding underlying causes of these threats and species’ responses can guide the design of conservation actions. However, research on carnivore conservation challenges has had unequal coverage in Argentina in terms of threats, taxonomy and geography.

In this overview, we evaluate what topics have been the subject of carnivore conservation research in Argentina over the past 25 years (1994-2018). Also, we identify thematic and taxonomic gaps and discuss what research may be important to address conservation and management needs. We do not attempt to conduct an exhaustive literature review but to describe main research lines, illustrating them with relevant publications.

Table 1 Conservation status of terrestrial carnivores present in Argentina evaluated at global (IUCN 2018) and national (SAyDS & SAREM 2019) scales. Nomenclature follows Teta et al. (2018)

CONFLICTS WITH LIVESTOCK PRODUCTION

Contributions in this field focused on methods to monitor canid populations (e.g., Novaro et al. 2000a), testing for selective methods to control “problem” carnivores (Travaini et al. 2001), assessing the impacts of hunting on canid populations in ranches (Novaro 1995), or understanding perceptions and attitudes of livestock producers towards carnivores (Travaini et al. 2000). Interest in this topic has recently revived, seeking to diagnose conflicts (e.g., Guerisoli et al. 2017; Gáspero et al. 2018) or design management options that minimize livestock and carnivore mortality, including the use of guard dogs (e.g., González et al. 2012) and negative reinforcement with distasteful agents to create food aversion (Nielsen et al. 2015).

HUMAN-MODIFIED LANDSCAPES

Ecological and demographic responses. At the community level, the effects of human- induced landscape changes on habitat use by carnivores were studied in various eco-regions (e.g., Caruso et al. 2016; Cruz et al. 2019).

At the population level, the ecological (e.g., Farias & Kittlein 2008; Paviolo et al. 2018) and demographic (e.g. Novaro et al. 2005; Pereira & Novaro 2014) responses to livestock management, agriculture, deforestation, or hunting pressure were also evaluated. Studies on this topic greatly differ in their levels of detail and in their temporal and spatial scales of application.

Hunting. Acting synergistically with habitat loss, poaching (i.e., illegal hunting) threatens several carnivores (e.g., Paviolo et al. 2016; Quiroga et al. 2016). Retaliatory killing has also been identified as a frequent source of mortality of carnivores (e.g., Funes et al. 2006; Carrera et al. 2012). In a culpeo (Lycalopex culpaeus) population that occurred in a landscape with interspersed sheep and cattle ranches in Patagonia, source-sink dynamics occurred as hunting to protect sheep created population sinks and culpeo protection on cattle ranches generated sources (Novaro et al. 2005). This type of dynamics may sustain other hunted car nivores in landscapes dominated by productive activities (Travaini et al. 2010). Lethal control of carnivores through state bounty systems was ineffective in reducing livestock losses (e.g., Llanos et al. 2014), possibly because source- sink dynamics leads to rapid recolonization by dispersers, suggesting the need to better understand and respond to human-carnivore interactions in productive landscapes.

Roads. Local assessments of carnivore road-kill mortalities have been conducted (e.g., Cuyckens et al. 2016; Bauni et al. 2017). However, knowl edge on the extent, magnitude, and population effects of road-kill mortality throughout most of the Argentine territory is unavailable; as is the influence of age, sex, body size, activity, or diet on the probability of being killed on roads. Also, no long-term or large-scale research has focused on issues such as road characteristics or temporal and spatial factors that modulate carnivore road-kill mortalities. As a result, mitigation measures to reduce fatalities have been extremely scarce in Argentina (e.g., Varela 2015).

Exotic species. Exotic species have become new prey for native carnivores (e.g., Pia et al. 2003; Palacios et al. 2012). In southern Pampas grasslands, the availability of horse carcasses may increase the density and affect the spatial organization of Pampas foxes Lycalopex gymnocercus (Luengos-Vidal et al. 2012). In parts of northern Patagonia, due to hunting and competition with introduced livestock and lagomorphs, the biomass of large- and medium- sized native herbivores (such as guanacos Lama guanicoe and rheas Pterocnemia pennata) has decreased, making their representation as prey and sources of carrion in carnivore diets very low (i.e., < 7%), a process termed ecological extinction (Novaro et al. 2000b). In this area, introduced lagomorphs greatly affect trophic webs, modifying the strength of predator-prey relationships and altering community dynamics (Barbar 2016). In contrast, in protected areas and abandoned ranches in southern Patagonia, where guanacos and other native prey have recovered in recent years, both native and in troduced prey play important roles in carnivore diets (Zanón-Martínez et al. 2012). Similarly, in protected and remote areas of northwestern Argentina, native prey still play important roles in the diet of carnivores, but domestic and invasive species are often consumed (Walker et al. 2007; Donadio et al. 2010).

Trophic segregation appears to facilitate the coexistence between the only species of wild carnivore introduced in Argentina, the American mink Neovison vison, and two native ones: the lesser grison Galictis cuja in northwestern Patagonia (Delibes et al. 2003) and the southern river otter Lontra provocax in Tierra del Fuego (Gomez et al. 2010; Valenzuela et al. 2013). The recent invasion of chinook salmon in Tierra del Fuego could provide a new prey for both the southern river otter and the mink (Riccialdelli et al. 2017), with unknown consequences for the regional trophic web.

Domestic and feral dogs have been recorded as predators of native carnivores (e.g., Lucherini & Merino 2008; Pereira et al. 2010). Predation of native carnivores by dogs is probably widespread in Argentina, the country with the largest number of dogs per capita in the world (Mestel 2017), although events are likely underreported in the scientific literature (authors, op. cit.). In addition to killing and displacing native carnivores, free-ranging dogs frequently attack livestock and can exacerbate conflicts between native carnivores and people (A. Schiavini, pers. com.; Montecino-Latorre & San Martin 2018).

Pathogens of domestic cats and dogs that are widely present in rural areas (i.e., canine distemper virus, canine parvovirus) are potential threats to native carnivores (e.g., Martino et al. 2004; Uhart et al. 2012). Despite the importance of this process, infection spillover from domestic to native carnivores has been poorly studied in Argentina. Antibody titers for canine distemper virus and canine parvovirus were also found in American mink in southern Patagonia, although the epidemiological importance of this finding is poorly understood (Martino et al. 2017).

TROPHIC CASCADES

Despite the importance of understanding and protecting the role of predation in ecosystems (Estes et al. 2011), few studies have been conducted on community-level trophic cascades. In the southern Puna, vicunas Vicugna vicugna avoid canyons with high risk of predation by pumas Puma concolor, leading to increased plant complexity in canyons (Donadio & Buskirk 2016). Similarly, the risk of predation by pumas may have a significant impact on guanaco population fitness, affecting forage consumption and habitat selection (Marino 2010) by this dominant native herbivore of the steppe and Monte. In northernmost Pata gonian steppe pumas do not move seasonally following migratory guanacos, their preferred prey (Gelin et al. 2017). Predictions about significant impacts on prey populations due to predation by pumas and culpeos based on indirect assessments of kill rates (Novaro & Walker 2005) require further testing.

PREDICTIVE MODELS

The distribution of some carnivores, including the poorly known bush dog Speothos venaticus (DeMatteo & Loiselle 2008), Andean cat Leopardus jacobita (Marino et al. 2011), and Patagonian weasel Lyncodon patagonicus (Schiaffini et al. 2013) have been analyzed considering climatic, environmental and human-related variables to infer ecological requirements and predict geographic and climatic ranges. Conservation models for carnivore populations facing different threats in Argentina were also developed, including a landscape specifically designed for jaguar (Panthera onca) conservation and management in the Atlantic Forest (De Angelo et al. 2013), an analysis of the possible impacts of climate change on the potential distribution and viability of some carnivore populations (e.g., Canepuccia et al. 2008; Torres et al. 2013; Cuyckens et al. 2015), and the identification of corridors to avoid jaguar population fragmentation (e.g., Martinez-Pardo et al. 2017).

GENETICS

Studies using molecular genetic tools in Argentina during the last 25 years have applications in conservation, especially those characterizing taxonomic units and determining Evolutionary Significant Units (ESUs) and Management Units (MUs), the genetic base for conservation plans. Based on genetic studies of the Argentinian populations of the maned wolf, only one MU was recognized (Raimondi 2013). Moreover, the two maned wolf population sources proposed by Pautasso (2009) (“Bajos Submeridionales” and “Bañados del Río Dulce/ Laguna Mar Chiquita”) showed little genetic variation, pointing to another population (“Iberá”) as the most variable and thus most plausible stronghold for the species in Argentina (Raimondi 2013).

The once continuous historical distribution of the jaguar in Argentina has been reduced to three, apparently separate populations (Yungas, Chaco and Atlantic Forest ecoregions). The jaguar population of the Atlantic Forest of Argentina has already lost genetic diversity but still has higher allelic richness than other smaller populations of the Brazilian Atlantic Forest, from which it is currently isolated and has differentiated by genetic drift rather than adaptive evolution (Haag et al. 2010). A preliminary comparison of the three Argentinian wild populations with captive jaguars in Argentinian zoos (Font 2016; P. Mirol, unpublished) indicated very similar genetic variability in both groups, amongst the lowest estimated for the species. The low genetic effective size of the captive population (6.8), much lower than its number of individuals (37), and the significant genetic differentiation among the three wild populations (P. Mirol, unpublished), suggest the urgent establishment of corridors connecting these populations in northern Argentina to avoid increasing genetic loss and potential fitness reduction.

Lower genetic variability and higher relatedness in comparison with Brazilian populations, as well as a positive association between habitat quality and heterozygosity, were found in Neotropical river otters Lontra longicaudis inhabiting an area of high human impact (Trigila et al. 2015). For southern river otters in Patagonia, two subpopulations deserving conservation attention were postulated, with one of them appearing not to have suffered a human-induced population bottleneck of the sort experienced by other otter species (Centrón et al. 2008).

The rare Andean cat showed extremely low mitochondrial and nuclear genetic diversity throughout its range (Cossios et al. 2012). The geographic structure of this cat’s genetic diver sity was strong, but differed from that of other Andean species, something perhaps explained by isolation in high-altitude “islands” and use of corridors inaccessible to other species. Cossios et al. recognized two ESUs; the southern ESU, at lower elevation in northwestern Patagonia, may be highly endangered due to its smaller range, high conflict with livestock producers (Novaro et al. 2010), and increasing impact from the largest hydrocarbon operation in Argentina (Walker et al. 2013).

Scat detection by trained dogs and posterior genetic analyses allowed species identification and analyses of genetic diversity and habitat use by five carnivore species (bush dogs, jaguars, pumas, ocelots Leopardus pardalis and southern tiger cats L. guttulus) in the Atlantic Forest of Argentina (DeMatteo et al. 2014a; 2014b). Results for the endangered bush dog suggested more tolerance to disturbed habitat than previously thought, but incipient genetic differentiation and possible dispersal limitation between two portions of the Misiones Green Corridor (DeMatteo et al. 2014b).

WHAT NEXT?

We identify five broad research topics and tools that we believe could help carnivore conservation significantly in the near future in Argentina:

Under-studied species. Almost all Argentine carnivore species have been the subject of at least one study with conservation implications, with the exception of very rare (and possibly locally extinct) giant otters Pteronura brasiliensis, marine otters Lontra felina, and greater grisons Galictis vittata. Other species have a very poor representation in terms of research (e.g., Patagonian weasel, tayra Eira barbara). Basic understanding of distributions, biological needs, and threats of these poorly studied species is necessary to determine potential conservation actions. Additionally, periodic assessments of species knowledge and conservation priorities (e.g., Lucherini et al. 2004) are essential to update research needs.

Human-wildlife conflicts. Human-wildlife conflicts here addressed are widespread in productive lands of Argentina, which encompass >50% of its territory (Trading Economics 2019). In addition, interactions among threats may quickly escalate in local or regional importance in the near future, deserving special attention. For example, fracking will likely exacerbate the impact of traditional hydrocarbon extraction and desertification, causing habitat degrada tion and threatening water resources affecting regions and species beyond the Patagonian Andean cat (Walker et al. 2013). Human–carnivore conflicts will likely increase in Argentina due to increasing demand for agricultural products and consequent land-use change, so novel in terventions that promote coexistence based on robust scientific evidence and applicable to local socio-economic conditions are urgently needed. A thorough understanding of the impacts of the overall and emerging threats to carnivore populations will allow stakeholders to do more than just respond to crises, instead establishing pre-emptive management actions based on the needs of carnivores and other wildlife.

Climate change. Climate is rapidly changing worldwide (Barros et al. 2015), exacerbating other threats and triggering new challenges for conservation. Understanding the spatial structure, dynamics and trends of carnivore populations and their ecosystem-level interactions is key to predicting the consequences of climate change, identifying practical measures to reduce and adapt to anticipated effects, and improving our capacity to conserve carnivores (Mawdsley et al. 2009). For example, the development of connectivity models taking into account climate change and landscape change projections, like agriculture expansion, will improve the design of corridors to minimize the effects of fragmentation on carnivores (Correa-Ayram et al. 2016). Another possible interaction with climate change is the exacerbation of carnivore-livestock conflicts. As forage availability declines during droughts or floods and livestock herds become nutritionally stressed, livestock can become more vulnerable to predation. Thus, we must increase our ability to predict and adapt to these events, as well as have new effective tools to protect livestock.

Citizen science / Volunteer work. Citizen science and participatory volunteer networks are becoming increasingly common to assist carnivore research and monitoring activities (Silvertown 2012). For example, when testing tools for carnivore conflict mitigation, active and continued engagement of local people has been crucial, as demonstrated in trials with livestock-guard dogs in Patagonia (González et al. 2012). The jaguar and puma populations of the Upper Paraná Atlantic Forest ecoregion of Argentina, Brazil and Paraguay were mapped and monitored with a volunteer network comprising > 100 volunteers (De Angelo et al. 2011). A similar initiative is currently being implemented in the Argentine Chaco to monitor jaguars (V. Quiroga, pers. comm.). Citizen science and conservation initiatives will become more common in Argentina and the Neotropics, particularly with charismatic species that attract public attention, as new technologies facilitate communication, data acquisition and processing (Silvertown 2012).

Rewilding. Several carnivore species have become regionally or locally extinct, the distributions of some carnivores have been drastically reduced, and their native prey have been depleted. For example, the jaguar currently occupies less than 5% of its original area (Di Bitetti et al. 2016) and it is considered ecologically extinct in the Chaco (Quiroga et al. 2014). The restoration of ecosystems through keystone species reintroductions, referred to as rewilding, is an increasingly used technique to restore ecosystem processes and services (Svenning et al. 2016). A large rewilding initiative is taking place in Argentina, in the Iberá National Park (Root-Bernstein et al. 2017). Two critically endangered large carnivores, the jaguar and the giant otter, are targets of reintroduction efforts, together with other mammal and bird species (Zamboni et al. 2017). Research and monitoring of ecological and genetic aspects of reintroduced populations and their communities, as well as social attitudes toward this rewilding program should provide the foundations for success of future rewilding projects in Latin America (Root-Bernstein et al. 2017).

Innovative strategies are required to prevent future loss of carnivore habitats and populations, and to mitigate human-carnivore conflict in the face of expanding human demands, land-use intensification, climate change, and exotic species introductions. Addressing the great conservation challenges that carnivores face through well-planned research and appropriate management actions will help secure the diversity and valuable ecological roles of carnivores in Argentina.

Acknowledgments

We thank Enrique Lessa, Eileen Lacey, Gabriel Marroig and two anonymous reviewers for useful comments that improved the manuscript.

REFERENCES

B01 BARBAR, F. 2016. Especies exóticas como estructuradoras de las comunidades invadidas, el caso de los Lagomorfos en la Patagonia. PhD Thesis. Universidad Nacional del Comahue, Bariloche, Río Negro, Argentina. [ Links ]

B02 BARROS, V. R., J. A. BONINSEGNA, I. A. CAMILLONI, M. CHIDIAK, G. O. MAGRÍN, & M. RUSTICUCCI. 2015. Climate change in Argentina: trends, projections, impacts and adaptation. WIREs Climate Change 6:151-169. [ Links ]

B03 BAUNI, V., J. ANFUSO, & F. SCHIVO. 2017. Mortalidad de fauna silvestre por atropellamientos en el Bosque Atlántico del Alto Paraná, Argentina. Ecosistemas 26:54-66. [ Links ]

B04 BURGIN, C. J., J. P. COLELLA, P. L. KAHN, & N. S. UPHAM. 2018. How many species of mammals are there? Journal of Mammalogy 99:1-14. [ Links ]

B05 CANEPUCCIA, A., A. FARÍAS, A. ESCALANTE, O. IRIBARNE, A. NOVARO, & J. ISACCH. 2008. Differential responses of marsh predators to rainfall-induced habitat loss and subsequent variations in prey availability. Canadian Journal of Zoology 86:407-418. [ Links ]

B06 CARRERA, M., M. J. NABTE, & D. E. UDRIZAR-SAUTHIER. 2012. Distribución geográfica, historia natural y conservación del hurón menor Galictis cuja (Carnivora: Mustelidae) en la Patagonia central, Argentina. Revista Mexicana de Biodiversidad 83:1252-1257. [ Links ]

B07 CARUSO, N., M. LUCHERINI, D. FORTIN, & E. B. CASANAVE. 2016. Species-specific responses of carnivores to human-induced landscape changes in central Argentina. PLoS ONE 11:e0150488. [ Links ]

B08 CENTRÓN, D. ET AL. 2008. Diversity of mtDNA in southern river otter (Lontra provocax) from Argentinean Patagonia. Journal of Heredity 99:198-201. [ Links ]

B09 CORREA-AYRAM, C. A., M. E. MENDOZA, A. ETTER, & D. R. PÉREZ. 2016. Habitat connectivity in biodiversity conservation: A review of recent studies and applications. Progress in Physical Geography: Earth and Environment 40:7-37. [ Links ]

B10 COSSIOS, E. D., R. S. WALKER, M. LUCHERINI, M. RUIZ- GARCÍA, & B. ANGERS. 2012. Population structure and conservation of a high-altitude specialist: the Andean cat. Endangered Species Research 16:283-294. [ Links ]

B11 CRUZ, P. ET AL. 2019. Cats under cover: habitat models indicate a high dependency on woodlands by Atlantic Forest felids. Biotropica (in press). DOI: 10.1111/btp.12635 [ Links ]

B12 CUYCKENS, G. A. E., M. M. MORALES, & M. F. TOGNELLI. 2015. Assessing the distribution of a Vulnerable felid species: threats from human land use and climate change to the kodkod Leopardus guigna. Oryx 49:611-618. [ Links ]

B13 CUYCKENS, G. A. E., L. S. MOCHI, M. VALLEJOS, P. G. PEROVIC, & F. BIGANZOLI. 2016. Patterns and composition of road-killed wildlife in northwest Argentina. Environmental Management 58:810-820. [ Links ]

B14 DE ANGELO, C. D. ET AL. 2011. Participatory networks for large-scale monitoring of large carnivores: pumas and jaguars of the Upper Paraná Atlantic Forest. Oryx 45:534-545. [ Links ]

B15 DE ANGELO, C. D., A. PAVIOLO, T. WIEGAND, R. KANAGARAJ, & M. S. DI BITETTI. 2013. Understanding species persistence for defining conservation actions: A management landscape for jaguars in the Atlantic Forest. Biological Conservation 159:422-433. [ Links ]

B16 DELIBES, M., A. TRAVAINI, S. C. ZAPATA, & F. PALOMARES. 2003. Alien mammals and the trophic position of the lesser grison (Galictis cuja) in Argentinean Patagonia. Canadian Journal of Zoology 81:157-162. [ Links ]

B17 DEMATTEO, K. E., & B. A. LOISELLE. 2008. New data on the status and distribution of the bush dog (Speothos venaticus): evaluating its quality of protection and directing research efforts. Biological Conservation 141:2494-2505. [ Links ]

B18 DEMATTEO, K. E. ET AL. 2014a. Using detection dogs and genetic analyses of scat to expand knowledge and assist felid conservation in Misiones, Argentina. Integrative Zoology 9:623-639. [ Links ]

B19 DEMATTEO, K. E. ET AL. 2014b. Noninvasive techniques provide novel insight for the elusive bush dog (Speothos venaticus). Wildlife Society Bulletin 38:862-873. [ Links ]

B20 DI BITETTI, M. S. ET AL. 2016. Estado de conservación del jaguar en la Argentina. El jaguar en el siglo XXI. La perspectiva continental (R. A. Medellín, A. J. de la Torre, H. Zarza, C. Chávez & G. Ceballos, coord.). Fondo de Cultura Económica, Universidad Nacional Autónoma de México, Instituto de Ecología, México. [ Links ]

B21 DONADIO, E., & S. W. BUSKIRK. 2016. Linking predation risk, ungulate antipredator responses, and patterns of vegetation in the high Andes. Journal of Mammalogy 96:966-977. [ Links ]

B22 DONADIO, E., A. J. NOVARO, S. W. BUSKIRK, A. WURSTTEN, M. S. VITALI, & M. J. MONTEVERDE. 2010. Evaluating a potentially strong trophic interaction: pumas and wild camelids in protected areas of Argentina. Journal of Zoology 280:33-40. [ Links ]

B23 ESTES, J. A. ET AL. 2011. Trophic downgrading of planet Earth. Science 333:301-306. [ Links ]

B24 FARIAS, A. A., & M. J. KITTLEIN. 2008. Small-scale spatial variability in the diet of pampas foxes (Pseudalopex gymnocercus) and human-induced changes in prey base. Ecological Research 23:543-550. [ Links ]

B25 FONT, D. 2016. Variabilidad genética en poblaciones silvestres y cautivas de jaguares (Panthera onca) en Argentina. Licenciate Thesis. Universidad de Buenos Aires, Buenos Aires, Argentina. [ Links ]

B26 FUNES, M. C. ET AL. 2006. El manejo de los zorros en Argentina. Compatibilizando las interacciones entre la ganadería, la caza comercial y la conservación. Manejo de Fauna Silvestre en Argentina (M. L. Bolkovic & D. E. Ramadori, eds.). Dirección de Fauna y Flora Silvestre, Buenos Aires, Argentina. [ Links ]

B27 GÁSPERO, P. G., M. H. EASDALE, J. A. PEREIRA, V. FERNÁNDEZ-ARHEX, & J. VON THÜNGEN. 2018. Human-carnivore interaction in a context of socio- productive crisis: Assessing smallholder strategies for reducing predation in North-west Patagonia, Argentina. Journal of Arid Environments 150:92-98. [ Links ]

B28 GELIN, M. L., L. C. BRANCH, D. H. THORNTON, A. J. NOVARO, M. J. GOULD, & A. CARAGIULO. 2017. Response of pumas (Puma concolor) to migration of their primary prey in Patagonia. PLoS ONE 12:e0188877. [ Links ]

B29 GÓMEZ, J. J., A. C. GOZZI, D. W. MACDONALD, E. GALLO, D. CENTRÓN, & M. H. CASSINI. 2010. Interactions of exotic and native carnivores in an ecotone, the coast of the Beagle Channel, Argentina. Polar Biology 33:1371-1378. [ Links ]

B30 GONZÁLEZ, A., A. J. NOVARO, M. FUNES, O. PAILACURA, M. J. BOLGERI, & S. WALKER. 2012. Mixed-breed guarding dogs reduce conflict between goat herders and native carnivores in Patagonia. Human-Wildlife Interactions 6:327-334. [ Links ]

B31 GUERISOLI, M. M., E. LUENGOS-VIDAL, M. FRANCHINI, N. CARUSO, E. B. CASANAVE, & M. LUCHERINI. 2017. Characterization of puma-livestock conflicts in rangelands of central Argentina. Royal Society Open Science 4:170852. [ Links ]

B32 HAAG, T. ET AL. 2010. The effect of habitat fragmentation on the genetic structure of a top predator: loss of diversity and high differentiation among remnant populations of Atlantic Forest jaguars (Panthera onca). Molecular Ecology 19:4906-4921. [ Links ]

B33 LLANOS, R., A. TRAVAINI, S. MONTANELLI, & E. CRESPO. 2014. Estructura de edades de pumas (Puma concolor) cazados bajo el sistema de remoción por recompensas en Patagonia. ¿Selectividad u oportunismo en la captura? Ecología Austral 24:311-319. [ Links ]

B34 LUCHERINI, M., & M. MERINO. 2008. Human-carnivore conflicts in the high-altitude Andes of Argentina. Mountain Research and Development 28:81-85. [ Links ]

B35 LUCHERINI, M., L. SOLER, & E. LUENGOS-VIDAL. 2004. A preliminary revision of knowledge status of felids in Argentina. Mastozoología Neotropical 11:7-17. [ Links ]

B36 LUENGOS-VIDAL, E. M., C. SILLERO-ZUBIRI, J. MARINO, E. B. CASANAVE, & M. LUCHERINI. 2012. Spatial organization of the Pampas fox in a grassland relict of central Argentina: a flexible system. Journal of Zoology 287:133-141. [ Links ]

B37 MARINO, A. 2010. Costs and benefits of sociality differ between female guanacos living in contrasting ecological conditions. Ethology 116:999-1010. [ Links ]

B38 MARINO, J. ET al. 2011. Bioclimatic constraints to Andean cat distribution: a modelling application for rare species. Diversity and Distributions 17:311-322. [ Links ]

B39 MARTÍNEZ-PARDO, J., A. PAVIOLO, S. SAURA, & C. DE ANGELO. 2017. Halting the isolation of jaguars: where to act locally to sustain connectivity in their southernmost population. Animal Conservation 20:543-554. [ Links ]

B40 MARTINO, P. E. ET AL. 2004. Serological survey of selected pathogens of free-ranging foxes in southern Argentina, 1998-2001. Revue Scientifique et Technique (International Office of Epizootics) 23:801-806. [ Links ]

B41 MARTINO, P. E., L. E. SAMARTINO, N. O. STANCHI, N. E. RADMAN, & E. J. PARRADO. 2017. Serology and protein electrophoresis for evidence of exposure to 12 mink pathogens in free-ranging American mink (Neovison vison) in Argentina. Veterinary Quarterly 37:207-211. [ Links ]

B42 MAWDSLEY, J. R., R. O’MALLEY, & D. S. OJIMA. 2009. A review of climate-change adaptation strategies for wildlife management and biodiversity conservation. Conservation Biology 23:1080-1089. [ Links ]

B43 MESTEL, R. 2017. Pets: Millennia together. Nature 543: S42-S43. [ Links ]

B44 MONTECINO-LATORRE, D., & W. SAN MARTIN. 2018. Evidence supporting that human-subsidized free- ranging dogs are the main cause of animal losses in small-scale farms in Chile. Ambio 48:240-250. [ Links ]

B45 NIELSEN, S., A. TRAVAINI, A. I. VASSALLO, D. PROCOPIO, & S. C. ZAPATA. 2015. Conditioned taste aversion in the grey fox (Pseudalopex griseus) in Southern Argentine Patagonia. Applied Animal Behaviour Science 163:167-174. [ Links ]

B46 NOVARO, A. J. 1995. Sustainability of harvest of culpeo foxes in Patagonia. Oryx 29:18-22. [ Links ]

B47 NOVARO, A. J. ET AL. 2010. Endangered Andean cat distribution beyond the Andes in Patagonia. Cat News 53:8-10. [ Links ]

B48 NOVARO, A. J., & R. S. WALKER. 2005. Human-induced changes in the effect of top carnivores on biodiversity in Patagonia. Large Carnivores and the Conservation of Biodiversity (J. C. Ray, J. Berger, K. H. Redford & R. Steneck, eds.). Island Press. [ Links ]

B49 NOVARO, A. J., M. C. FUNES, C. RAMBEAUD, & O. MONSALVO. 2000a. Calibración del índice de estaciones odoríferas para estimar tendencias poblacionales del zorro colorado (Pseudalopex culpaeus) en Patagonia. Mastozoología Neotropical 7:81-88. [ Links ]

B50 NOVARO, A. J., M. C. FUNES, & R. S. WALKER. 2000b. Ecological extinction of native prey of a carnivore assemblage in Argentine Patagonia. Biological Conservation 92:25-33. [ Links ]

B51 NOVARO, A. J., M. C. FUNES, & R. S. WALKER. 2005. An empirical test of source-sink dynamics induced by hunting. Journal of Applied Ecology 42:910-920. [ Links ]

B52 PALACIOS, R., R. S. WALKER, & A. J. NOVARO. 2012. Differences in diet and trophic interactions of Patagonian carnivores between areas with mostly native or exotic prey. Mammalian Biology 77:183-189. [ Links ]

B53 PAUTASSO, A. A. (Ed.) 2009. Estado de conocimiento y conservación del aguará guazú (.. brachyurus) en la provincia de Santa Fe, Argentina. Biológica 11:1-123. [ Links ]

B54 PAVIOLO, A. ET AL. 2016. A biodiversity hotspot losing its top predator: The challenge of jaguar conservation in the Atlantic Forest of South America. Nature Scientific Reports 6:37147. [ Links ]

B55 PAVIOLO, A. ET AL. 2018. Barriers, corridors or suitable habitat? Effect of monoculture tree plantations on the habitat use and prey availability for jaguars and pumas in the Atlantic Forest. Forest Ecology and Management 430:576-586. [ Links ]

B56 PEREIRA, J. A. & A. J. NOVARO. 2014. Habitat-specific demography and conservation of Geoffroy’s cats in a human-dominated landscape. Journal of Mammalogy 95:1025-1035. [ Links ]

B57 PEREIRA, J. A. ET AL. 2010. Causes of mortality in a Geoffroy´s cat population - A long-term survey using diverse recording methods. European Journal of Wildlife Research 56:939-942. [ Links ]

B58 PIA, M. V., M. S. LÓPEZ, & A. J. NOVARO. 2003. Effects of livestock on the feeding ecology of endemic culpeo foxes (Pseudalopex culpaeus smithersi) in central Argentina. Revista Chilena de Historia Natural 76:313-321. [ Links ]

B59 QUIROGA, V. A., A. J. NOSS, A. PAVIOLO, G. I. BOAGLIO, & M. S. DI BITETTI. 2016. Puma density, habitat use and conflict with humans in the Argentine Chaco. Journal for Nature Conservation 31:9-15. [ Links ]

B60 QUIROGA, V. A., G. I. BOAGLIO, A. J. NOSS, & M. S. DI BITETTI. 2014. Critical population status of the jaguar Panthera onca in the Argentine Chaco: Camera-trap surveys suggest recent collapse and imminent regional extinction. Oryx 48:141-148. [ Links ]

B61 RAIMONDI, V. 2013. Genética aplicada a la conservación de especies amenazadas y su hábitat. Estudio del aguará guazú (Chrysocyon brachyurus) y del venado de las pampas (Ozotoceros bezoarticus). PhD Thesis. Universidad de Buenos Aires, Buenos Aires, Argentina. [ Links ]

B62 RICCIALDELLI, L., S. D. NEWSOME, M. L. FOGEL, & D. A. FERNÁNDEZ. 2017. Trophic interactions and food web structure of a subantarctic marine food web in the Beagle Channel: Bahía Lapataia, Argentina. Polar Biology 40:807-821. [ Links ]

B63 ROOT-BERNSTEIN, M., M. GALETTI, & R. J. LADLE. 2017. Rewilding South America: Ten key questions. Perspectives in Ecology and Conservation 15:271-281. [ Links ]

B64 SAYDS & SAREM [SECRETARÍA DE AMBIENTE Y DESARROLLO SUSTENTABLE DE LA NACIÓN AND SOCIEDAD ARGENTINA PARA EL ESTUDIO DE LOS MAMÍFEROS] (Eds.) (2019). Categorización 2019 de los Mamíferos de Argentina según su Riesgo de Extinción. Lista Roja de los Mamíferos de Argentina. Versión digital: http://cma.sarem.org.arLinks ]

B65 SCHIAFFINI, M. I., G. M. MARTIN, A. L. GIMÉNEZ, & F. J. PREVOSTI. 2013. Distribution of Lyncodon patagonicus (Carnivora, Mustelidae): changes from the Last Glacial Maximum to the present. Journal of Mammalogy 94:339-350. [ Links ]

B66 SILVERTOWN, J. 2012. A new dawn for citizen science. Trends in Ecology and Evolution 24:467-471. [ Links ]

B67 SVENNING, J. C. ET AL. 2016. Science for a wilder Anthropocene: Synthesis and future directions for trophic rewilding research. PNAS 113:898-906. [ Links ]

B68 TETA, P. ET AL. 2018. Lista revisada de los mamíferos de Argentina. Mastozoología Neotropical 25:163-198. [ Links ]

B69 TORRES, R., J. P. JAYAT, & S. PACHECO. 2013. Modelling potential impacts of climate change on the bioclimatic envelope and conservation of the maned wolf (Chrysocyon brachyurus). Mammalian Biology 78:41- 49. [ Links ]

B70 TRADING ECONOMICS 2019. Argentina. <https://tradingeconomics.com/argentina/agricultural-land-percent-of-land-area-wb-data.html>; [ Links ]

B71 TRAVAINI, A., A. RODRÍGUEZ, D. PROCOPIO, S. C. ZAPATA, J. I. ZANÓN, & R. MARTÍNEZ-PECK. 2010. A monitoring program for Patagonian foxes based on power analysis. European Journal of Wildlife Research 56:421-433. [ Links ]

B72 TRAVAINI, A., R. M. PECK, & S. C. ZAPATA. 2001. Selection of odor attractants and meat delivery methods to control culpeo foxes (Pseudalopex culpaeus) in Patagonia. Wildlife Society Bulletin 29:1089-1096. [ Links ]

B73 TRAVAINI, A., S. C. ZAPATA, R. MARTÍNEZ-PECK, & M. DELIBES. 2000. Percepción y actitud humanas hacia la predación de ganado ovino por el zorro colorado (Pseudalopex culpaeus) en Santa Cruz, Patagonia Argentina. Mastozoología Neotropical 7:117-129. [ Links ]

B74 TRIGILA, A. P., J. J. GÓMEZ, M. H. CASSINI, & J. I. TÚNEZ. 2015. Genetic diversity in the Neotropical river otter, Lontra longicaudis (Mammalia, Mustelidae) in the Lower Delta of Parana River, Argentina and its relation with habitat suitability. Hydrobiologia 768:287-298. [ Links ]

B75 UHART, M., M. V. RAGO, C. MARULL, H. V. FERREYRA, & J. A. PEREIRA. 2012. Exposure to selected pathogens in Geoffroy´s cats and domestic carnivores from central Argentina. Journal of Wildlife Diseases 48:899-909. [ Links ]

B76 VALENZUELA, A. E. J., A. RAYA-REY, L. FASOLA, & A. SCHIAVINI. 2013. Understanding the inter-specific dynamics of two co-existing predators in the Tierra del Fuego Archipelago: the native southern river otter and the exotic American mink. Biological Invasions 15:645-656. [ Links ]

B77 VARELA, D. M. 2015. Ecología de Rutas en Misiones. Evaluación de la efectividad de los pasafaunas y ecoductos. Informe con resultados para el período 2011-2014. Dirección Provincial de Vialidad de Misiones & Conservación Argentina. DOI: 10.13140/ RG.2.2.17156.83843 [ Links ]

B78 WALKER, R. S. ET AL. 2007. Diets of three species of Andean carnivores in high-altitude deserts of Argentina. Journal of Mammalogy 88:519-525. [ Links ]

B79 WALKER, S., M. FUNES, L. HEIDEL, R. PALACIOS, & A. NOVARO. 2013. The Endangered Andean cat and fracking in Patagonia. Oryx 48:14-15. [ Links ]

B80 ZAMBONI, T., S. DI MARTINO, & I. JIMÉNEZ-PÉREZ. 2017. A review of a multispecies reintroduction to restore a large ecosystem: The Iberá Rewilding Program (Argentina). Perspectives in Ecology and Conservation 15:248-256. [ Links ]

B81 ZANÓN-MARTÍNEZ, J. I., A. TRAVAINI, S. ZAPATA, D. PROCOPIO, & M. A. SANTILLÁN. 2012. The ecological role of native and introduced species in the diet of the puma Puma concolor in southern Patagonia. Oryx 46:106-111. [ Links ]

Recibido: 13 de Marzo de 2019; Aprobado: 25 de Mayo de 2019