SciELO - Scientific Electronic Library Online

vol.24 issue1Health condition of an ancient population in the west of Mesoamerica: study of the inhabitants of Los Limones archaeological site, Mexico (600-1000 d.C.)Evaluation of periodontitis in hunter-gatherers from southern Patagonia during the late Holocene (CA. 3500-200 YEARS BP) author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




  • Have no cited articlesCited by SciELO

Related links


Revista argentina de antropología biológica

On-line version ISSN 1514-7991

Rev Arg Antrop Biol vol.24 no.1 La Plata June 2022  Epub Jan 01, 2022 

Trabajos Originales

Sex estimation using humeral and femoral head diameters in contemporary and prehispanic mexican populations

Estimación del sexo a partir del diámetro de la cabeza humeral y femoral en poblaciones mexicanas de época prehispánica y contemporánea

Adriana Zamora1

Antinea Menéndez Garmendia2  *

Fernando Ruiz-Velasco3

Gabriela Sánchez-Mejorada2

Lourdes Márquez-Morfín3

Jorge A. Gómez-Valdés3

1 Escuela Nacional de Antropología e Historia, Periférico Sur y Zapote S/N, Colonia Isidro Fabela, Tlalpan, CDMX 14030, México.

2 Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México. Circuito Interior, Ciudad Universitaria, Coyoacán, CDMX 04510, México.

3 Posgrado en Antropología Física, Escuela Nacional de Antropología e Historia, Periférico Sur y Zapote S/N, Colonia Isidro Fabela, Tlalpan, CDMX 14030, México.


In bioarchaeology and forensic anthropology the most reliable skeletal element for sex estimation is the pelvis; nevertheless, when it is missing, other postcranial elements must be used. The main goal of this research is to provide sectioning points for sex assessment from humeral and femoral head diameters for three prehispanic and two contemporary Mexican populations. Using a sliding caliper, a total of 386 (45.3% female and 54.6% male) humeral and femoral head diameters were recorded. The sectioning point was calculated as the mean between sexes, and univariate independent sample t-tests were performed to test significant differences between sexes. The results demonstrate significant sexual differences in all populations and high percentages of correct sex classification (90%-94%). We conclude that the proposed cut-off points can be used as an alternative for sex estimation in Mexican populations, in contexts with incomplete skeletons and/or fragmented bones.

Keywords: bioarchaeology; forensic anthropology; osteoarchaeology; skeletal remains; Mesoamérica


Tanto en bioarqueología como en antropología forense, la pelvis es el elemento óseo con mayor confiabilidad para la estimación sexual; no obstante, cuando no está presente, otros elementos deben ser utilizados. Es por ello que el objetivo principal de este trabajo es proveer puntos de corte para estimar el sexo a partir del diámetro de la cabeza del húmero y del fémur, en poblaciones mexicanas (tres prehispánicas y dos contemporáneas). Utilizando el compás de corredera, se midió un total de 386 (45,3 % femeninos y 54.6.% masculinos) diámetros de la cabeza humeral y femoral. Los resultados demuestran diferencias estadísticamente significativas entre sexos en todas las poblaciones y altos porcentajes de clasificación sexual correcta (90 %-94 %). Por lo tanto, concluimos que los puntos de corte propuestos pueden ser utilizados como una alternativa para la estimación sexual, para la población mexicana, en contextos con esqueletos incompletos y/o huesos fragmentados.

Palabras clave: bioarqueología; antropología forense; osteoarqueología; restos óseos; Mesoamérica

In bioarchaeological and forensic anthropology sex estimation from skeletal remains is crucial to develop a biological profile. Based on the patterns of sexual dimorphism, the primary skeletal structure used to determine the sex is the pelvis; however, it is important to propose alternatives due to the incomplete or/and fragmented condition of the recovered bones in bioarchaeological and forensic contexts (Albanese, 2013; Marlow & Pastor, 2011; Ostrofsky & Churchill, 2015; Torres et al., 2020). In Mexico, there are several studies involving these conditions, such as non-funerary bioarchaeological contexts that exhibit several posthumous body treatments and ritual assemblage (Chávez, 2012; Gómez et al., 2007; Ruiz Albarrán, 2019; Ruíz, 2020; Ruíz et al., 2016; Tiesler, 2007; Tiesler et al., 2013); ossuaries and secondary bone deposits related to epidemics (Barquera et al., 2020; Márquez-Morfín & Meza, 2015; Meza & Báez, 1994) and forensic cases of enforced disappearance (Adams & Byrd, 2008).

Numerous metric studies using univariate and multivariate metric analysis of postcranial elements have reported high classification rates in sex estimation (Albanese, et al., 2005; Asala et al., 2004; Dittrick & Suchey, 1986; Spradley et al., 2015; Spradley & Jantz, 2011). It is important to highlight that these approaches have some advantages in forensic and archaeological analyses, since they are based on objective morphometric measurements, with smaller intra and inter-observer errors and they are less time consuming (Milner & Boldsen, 2012).

It has been observed that long bones are reliable in sex determination, especially considering the epiphyseal measurements. Principally, the humerus and femur present high percentages of correct sex classification (Albanese, 2013; Spradley & Jantz, 2011). However, considerable overlap in the size and degree of robusticity in male and female skeletons complicates the estimation of sex. The accuracy of sex assessment depends on the degree of dimorphism expressed in the individuals (Green & Curnoe, 2009; Walrath et al., 2004). Additionally, sexual identification of human skeletal material is most accurate after the individual reaches maturity (White & Folkens, 2005), because the secondary dimorphism anatomical differences tend to be more pronounced after the maturation period (Paciulli, 2017; Plavcan, 2001, 2012; Tague & Lovejoy, 1998).

The aim of the present study is to obtain the sectioning points of the humeral and femoral head diameters from contemporary (UNAM-Collection and Xigui) and prehispanic skeletal series (Monte Albán, Oaxaca; La Mesa, Hidalgo, and San Gregorio, Xochimilco) and provide values for sex estimation when the pelvic bones are not preserved. This ancient and contemporary population analysis permits us to set parameters for sex estimation in forensic and bioarchaeological contexts and assess the secular trends that affect the patterns of sex variation.


A total of 386 adult individuals (45.3% female and 54.6% male) from prehispanic (n= 176) and contemporary (n= 210) human groups were analyzed. The UNAM-Collection and the Santa María Xigui correspond to a reference series of Mexican contemporary population subjects; as well as both mestizos from Mexico City and indigenous of a rural community of Hidalgo, Mexico. The prehispanic populations are from three different Mesoamerican sites: La Mesa (in Mixquiahuala, Hidalgo), El Japón (in San Gregorio Atlapulco, Xochimilco) and Monte Albán (in Oaxaca). For the prehispanic samples sex was determined by a morphoscopic analysis of the iliac bone, according to Phenice (1969) and Bruzek (2002).

Prehispanic population samples

Monte Albán

The city of Monte Albán was the Zapotec sociopolitical and economic center from the Preclassic to the Epiclassic periods (500 b.C.- 750 a.C.) located in the southwest state of Oaxaca. Monte Albán society was stratified, with social status dependent on the individual’s participation in the economy, politics and religion. Blanton (1978) identified fifteen habitational units scattered on Monte Albán's hinterland terraces, and was able to determine that the neighborhoods adjacent to the Plaza Central and the important buildings were elite residences. Most of the population resided in domestic units in Monte Albán's neighborhoods, where manufacturing activities of products such as textiles, ceramics and lithic, among others, were performed (González-Licón, 2011). The skeletons that integrate the analyzed series belonged to the former inhabitants of Monte Albán, Oaxaca. They were part of the permanent resident population of the site between the Early Classic (Monte Albán II) 200 a.C., and the Late Classic (Monte Albán III) 900 a.C. periods (González-Licón, 2011). For the analysis, 56 individuals (28.6% female and 71.4% male) were measured (Table 1).

TABLE 1 Summary age groups and sex for the analyzed samples, according to population chronological age 

    Pehispanic Contemprary Total
Age   Monte Alban La Mesa San Gregorio Total Xigui CDMX Total  
Adult n 4 4 0 8 14 11 25 33
  % 12% 12% 0% 24% 42% 33% 76% 100%
Young adult n 4 7 26 37 1 9 10 47
  % 9% 15% 55% 79% 2% 19% 21% 100%
Middle adult n 5 3 23 31 3 15 18 49
  % 10% 6% 47% 63% 6% 31% 37% 100%
Old adult n 3 0 4 7 12 27 39 46
  % 7% 0% 9% 15% 26% 59% 85% 100%
Total n 16 14 53 83 30 62 92 175
  % 9% 8% 30% 47% 17% 35% 53% 100%
Adult n 11 1 1 13 11 16 27 40
  % 28% 3% 3% 33% 28% 40% 68% 100%
Young adult n 11 5 18 34 2 17 19 53
  % 21% 9% 34% 64% 4% 32% 36% 100%
Middle adult n 14 7 18 39 10 23 33 72
  % 19% 10% 25% 54% 14% 32% 46% 100%
Old adult n 4 0 3 7 7 32 39 46
  % 9% 0% 7% 15% 15% 70% 85% 100%
Total n 40 13 40 93 30 88 118 211
  % 19% 6% 19% 44% 14% 42% 56% 100%

La Mesa

The archaeological site of La Mesa, located in the occidental area of La Mina Hill, was occupied in the Epiclassic period between 600-900 a.C. From the topographic view it has a military strategic position (Bonfil, 2005). This period was characterized by migrations, anarchy and intergroup conflicts for resources and territory at a regional level. Furthermore, because of migration (induced by the collapse of Teotihuacan), it is possible that the population of La Mesa was composed of different cultural and geographical origin groups into the same settlement (González, 2017). According to the distribution, dimensions and architecture of the site, research suggests two main activities: housing and ceremonial-administrative (Bonfil, 2005). The sample was composed of 27 indivuduals (52% females and 48% males) (Table 1).

San Gregorio Atlapulco

The chronology of the osteological series of San Gregorio Atlapulco corresponds to the Late postclassic and the Contact period (Medrano, 1999). More specifically, it belongs to the archaeological site of El Japón, located in the native town of San Gregorio Atlapulco, at the northeast of Xochimilco’s urban area. The site was named El Japón for the channel of the same name that runs through its western border. The Chalco channel marks its northern border and the San Sebastián channel its eastern one (Civera, 2018). In prehispanic times it was a seasonal activity area and has been classified as a tributary center during the contact period (Bullock et al., 2013; Hernández, 2006). Atlapulco featured a high demographic concentration and monumental architecture (Parsons et al., 1982) during prehispanic times, and it depended on Xochimilco (Civera, 2018). The main characteristic and subsistence mode of Atlapulco was agriculture based on the chinampas system. In this sample, 93 individuals were considered (57% females and 43% males) (Table 1).

Contemporary samples


The UNAM-Collection sample consists of 150 Mexican Mestizo individuals (41.3% females and 58.7% males) from the Osteological Collection of the Physical Anthropology Laboratory, Department of Anatomy, School of Medicine of the Universidad Nacional Autónoma de México (UNAM) (Table 1). The UNAM-Collection is comprised of contemporary skeletons (1990-2010 chronological range of the years of death) belonging to unclaimed bodies from forensic institutes, public hospitals, psychiatric institutions, and shelters. The individuals have recorded antemortem data such as sex and age at death. In some cases, name, death cause and provenance are also known (Gómez-Valdés et al.,2017, 2012; Menéndez Garmendia et al., 2014). The study of the UNAM-Collection was conducted following the established norms in Items 4 and 5 from the Third Chapter of the Regulations for Safety and Coordination of Health Research of the Universidad Nacional Autónoma de México Legislation (Universidad Nacional Autónoma de México, 2021).

Santa María Xigui

The Xigui sample consists of 60 individuals (50% females and 50% males) of Hña-Hñu -otomí- individuals from the Santa María Xigui of the Alfajayucan municipality, Hidalgo, México (Table 1). Xigui -a part of the Mezquital Valley- is a cultural and geographical region consisting of 27 Municipal localities characterized by semi-arid climate. This valley is subdivided into five sub-regions of which Alfajayucan is one of its main plains. The Mezquital Valley has been inhabited by different Native American groups that share a common genetic origin, with the Otomí population being the first to separate from the others in the late Early Preclassic period: 2500-1200 YBP (Gómez-Valdés et al., 2017). In 2010, Santa Maria Xigui had a total population of 1,104 inhabitants (564 females and 540 males) of whom 37.93% were Otomí (hñä hñu) language speakers (Instituto Nacional de Estadística, Geografía e Informática, 2021). Skeletal data were obtained with informed consent from relatives during the relocation of the Nuestro Señor San Isidro Labrador cemetery in December of 2013. Sex and age at death data were obtained from cemetery records. The sample covers the period between 1960 and 2010 (Álvarez et al., 2017; Gómez-Valdés et al., 2017).

Data collection

The osteometric measurements of the maximum vertical diameter of the head of the humerus and maximum diameter of the femur head were taken using a digital a sliding caliper, according to Langley et al. (2016) (Fig. 1) on the left side, or on the right side in its absence. As inclusion criteria, only adults in a well-preserved state, without fractures, pathological abnormalities or taphonomic alterations were analyzed. Although the age at death is not a variable of interest, we determine adulthood (entire maturation) using the ribs and the pubic symphysis (Digangi et al., 2009; Gilbert & McKern, 1973; Íşcan et al.,1984, 1985; Mckern & Stewart, 1957; White & Folkens, 2005). A repeated measures design was carried on to evaluate the Technical Error of Measurement (TEM) (Knapp, 1992). TEM was tested in two steps. First, for UNAM-Collection, the intra (JAGV) and interobserver (external second observer) error was calculated. Subsequently, in the prehispanic samples, the maximum expected error value (1 mm) was considered at the time of acquiring the repeated measurements by one observer (AZ).

Fig. 1 Osteometric measurements of humeral and femoral head diameter. Humerus: the distance between the most superiorand inferior points on the border of the articular surface. Femur: the maximum diameter of the femur head measured on the border of the articular surface (Langley et al., 2016). 

Statistical methods

The univariate statistical analysis was carried out in three stages: the first based on Shapiro-Wilk's Goodness-Fit test, which allowed us to determine whether or not it was possible to establish a normal distribution. In the second stage, One-way ANOVA (Analysis of Variance) was conducted to evaluate any significant differences (α = 0.05) between populations in each sex. Based on Tukey’s test, we re-grouped the populations in two samples: prehispanic and contemporary. Finally, the independent sample t-test was applied (α = 0.05), comparing measurements between males and females. The cut-off point has been calculated as the average of the female and male mean values.


The percentage of TEM deviation was between a minimum of 0.48 and a maximum of 1.58. In all cases, TEM units for the intra and interobserver errors showed values less than 1 mm. The errors in humeral and femoral head measurements are similar; nevertheless, lower repeatability errors were detected on the femur head diameter. The intraobserver error is clearly inferior after taking into account a TEM criterion. In this work the margin of error was considered acceptable (Table 2).

TABLE 2 Technical Error of Measurement (TEM) 

  Head diameter N TEM %TEM
Intraobserver Humerus 48 0.64 1.58
  Femur 48 0.33 0.82
Interobserver Humerus 89 0.45 1.04
  Femur 89 0.39 0.89
Prehispanic series        
Intraobserver Humerus 154 0.24 0.58
  Femur 200 0.20 0.48

All variables showed a normal distribution in each side and sex, tested with the Shapiro-Wilks test. The one-way ANOVA shows at least two population means that are significantly different (p≤0.05) between groups. Grouping of pairwise comparison obtained after the Tukey test allowed us to group Monte Albán, La Mesa and San Gregorio Atlapulco as a prehispanic sample, and UNAM and Xigui as a single group belonging to the contemporary Mexican population (Supplementary Table 1).

In Table 3, the descriptive results of female and male differences among the maximum vertical diameter of humeral and femoral head, is presented. In the prehispanic populations, the mean diameter of the humerus head for the female sample was 37.74mm, while for the males, 44.41mm. In the case of contemporary populations, the mean of the humerus is 39.31mm for the females and 44.77mm for males. Regarding the dimensions of the femoral head diameter, the female mean was 38.93mm and the male was 44.25mm for the prehispanic sample. Finally, for contemporary samples, a value of 38.73mm was calculated for the female and 44.87 mm for the male subjects (descriptive statistics of ungrouped skeletal series presented in Supplementary Table 2).

TABLE 3 Means, standard deviation and Shapiro-Wilk normality test for humeral and femoral head diameter 

    N Min. Max. Mean S.D. Shapiro-Wilk d.f. Sig.
Prehispanic Humerus 67 34 42 37.74 1.74 0.973 67 0.16
  Femur 76 35 42 38.93 1.63 0.987 76 0.66
Contemprary Humerus 91 34 43 39.31 2.01 0.968 91 0.03
  Femur 92 34 44 38.73 2.01 0.974 92 0.07
    N Min. Max. Mean S.D. Shapiro-Wilk d.f. Sig.
Prehispanic Humerus 66 40 48 44.41 2.12 0.968 66 0.08
  Femur 84 41 49 44.25 1.90 0.980 84 0.23
Contemprary Humerus 117 38 52 44.77 2.42 0.985 117 0.21
  Femur 118 39 51 44.87 2.41 0.987 118 0.32

Min.=Minimum; Max=Maximum; S.D.=Standard deviation; d.f.=Degree of freedom; Sig.=Significance

Independent samples t-test shows that sexual differences (p≤0.05) are observable on the considered variables for the humerus and femur, confirming that humeral and femoral head diameters are reliable indicators of sexual dimorphism. The sectioning points and associated percentages of classification rates are presented in Table 4. Prehispanic and contemporary populations had the same sectioning points, except for the humeral head diameter. The humeral head diameter provides a classification rate of 94.0% for prehispanic and 90.1% for contemporary populations; and femoral head of 90.8% and 92.5% for prehispanic and contemporary populations, respectively (Table 4).

TABLE 4 Univariate independent sample t-tests and associated percentage of classification rates between sexes for humeral and femoral head diameter 

  Female Male t-value d.f. Sig. Sectioning-Point % Female % Male Total
Prehispanic 37.74 44.41 -19.86 131 0.00 41 100.0 87.9 94.0
Contemporary 39.31 44.77 -17.35 206 0.00 42 87.9 92.3 90.1
  Female Male t-value d.f. Sig. Sectioning-Point % Female % Male Total
Prehispanic 38.93 44.25 -18.91 158 0.00 42 94.7 86.9 90.8
Contemporary 38.73 44.87 -19.64 208 0.00 42 93.5 91.5 92.5

d.f.= Degree of freedom; Sig.=Significance


In forensic anthropology and bioarchaeology, sex estimation is one of the steps to characterize and/or achieve a successful identification of unknown individuals. This research aimed to calculate sectioning points from the humeral and femoral head diameters for sex assessment in prehispanic and contemporary Mexican populations. Spradley and Jantz (2011) and Spradley et al. (2015) explored sexual dimorphism in postcranial metric elements through the application of uni and multivariate statistical analysis. Their results demonstrate that postcranial metric elements are more reliable sex estimators than metric traits of the skull. In fact, the authors mention that a single measurement (diaphyseal and epiphyseal diameters) provides the same classification rate as a multivariate analysis of the cranium. In the same way, various authors have provided valuable information to differentiate between sexes based on humeral and femoral head diameters (López Alonso, 1967; Milner & Boldsen, 2012; Moore et al., 2016; Tise et al., 2013; Vargas et al., 1973).

In our work, the strong sexual dimorphism among the humerus and femur head diameters in ancient and recent Mexican populations, allowed us to propose new sectioning point values to estimate sex. Nevertheless, and contrary to other works as Guyomarc’h et al. (2016), we did not observe significant differences between prehispanic and contemporary populations. Accordingly, our sectioning points correspond to those reported by Spradley et al. (2015) from Hidalgo and Yucatan Native Americans and Mexican migrants from Tucson, Arizona. This suggests a low variation in size levels between ancient and modern Mexican populations. Nevertheless, it is important to mention that we found differences in the mean values compared with other populations (İşcan, et al., 1998; Jiménez-Arenas, 2010; Kranioti & Michalodimitrakis, 2009; Milner & Boldsen, 2012; Spradley & Jantz, 2011), even in Latin American populations (Garrido-Varas et al., 2014; Machado & Urgellés, 2011; Mazza, 2016; Rosique et al., 2004).

However, we also observed different tendencies in the morphometric variation, in accordance with the physical activity patterns among populations. Monte Albán, La Mesa and Xigui exhibit more musculoskeletal markers on the lower limb -in contrast to San Gregorio and CDMX- due to a specific physical activity given by the highland environment. Our results support the use of the humeral and femoral sectioning points for sex assessment of prehispanic and contemporary Mexican populations. However, these values should be tested against samples from other periods and geographic populations.


We thank Dr. Jorge Aranda and B.S. Lilia Estela Aguilar Carril for the English editorial assistance. Also M.A. Sandra Sedano Ríos for the interobserver analysis colaboration.


Adams, B. J., & Byrd, J. E. (2008). Recovery, Analysis, and Identification of Commingled Human Remains. Totowa, NJ: Humana Press. ]

Albanese, J. (2013). A method for estimating sex using the clavicle, humerus, radius, and ulna. Journal of Forensic Sciences, 58(6), 1413-1419. ]

Albanese, J., Cardoso, H. F. V. & Saunders, S. R. (2005). Universal methodology for developing univariate sample-specific sex determination methods: an example using the epicondylar breadth of the humerus. Journal of Archaeological Science, 32(1), 143-152. ]

Álvarez, E., Menéndez, A., Torres, G., Sánchez-Mejorada, G. & Gómez-Valdés, J. A. (2017). Análisis de funciones discriminantes para la estimación del sexo con la mandíbula en población mexicana. Revista Española de Medicina Legal, 43(4), 146-154. ]

Asala, S. A., Bidmos, M. A. & Dayal, M. R. (2004). Discriminant function sexing of fragmentary femur of South African blacks. Forensic Science International, 145(1), 25-29. ]

Barquera, R., Lamnidis, T. C., Lankapalli, A. K., Kocher, A., Hernández-Zaragoza, D. I., Nelson, E. A., Zamora-Herrera, A.C., Ramallo, P., Bernal-Felipe, N., Immel, A., Bos, K., Acuña-Alonzo, V., Barbieri, C., Roberts, P., Herbig, A., Kühnert, D., Márquez-Morfín, L. & Krause, J. (2020). Origin and health status of first-generation Africans from Early Colonial Mexico. Current Biology, 30(11), 2078-2091.e11. ]

Blanton, R. E. (1978). Monte Albán: Settlement Patterns at the Ancient Zapotec Capital (1st ed.). New York, USA: Academic Press. [ Links ]

Bonfil, A. (2005). Cultura y contexto: el comportamiento de un sitio del epiclásico en la región de Tula. In L. Manzanilla (Ed.), Reacomodos Demográficos del Clásico al Posclásico en el Centro de México (pp. 227-259). México: Universidad Nacional Autónoma de México. [ Links ]

Bruzek, J. (2002). A method for visual determination of sex, using the human hip bone. American Journal of Physical Anthropology, 117(2), 157-168. ]

Bullock, M., Márquez, L., Hernández, P. & Ruíz, F. (2013). Paleodemographic age-at-death distributions of two Mexican skeletal collections: A comparison of transition analysis and traditional aging methods. American Journal of Physical Anthropology , 152(1), 67-78. ]

Chávez, X. (2012). Sacrificio Humano y Tratamientos Mortuorios en el Templo Mayor de Tenochtitlan. México: Universidad Nacional Autónoma de México . [ Links ]

Civera, M. (2018). Condiciones de Vida y Salud en la Comunidad Prehispánica de San Gregorio Atlapulco, Xochimilco (1st ed.). México: Universidad Nacional Autónoma de México . [ Links ]

Digangi, E. A., Bethard, J. D., Kimmerle, E. H. & Konigsberg, L. W. (2009). A new method for estimating age-at-death from the first rib. American Journal of Physical Anthropology , 138(2), 164-176. ]

Dittrick, J. & Suchey, J. (1986). Sex determination of Prehistoric Central California skeletal remains using discriminant analysis of the femur and humerus. American Journal of Physican Anthropology, 70, 3-9. ]

Garrido-Varas, C., Thompson, T. & Campbell, A. (2014). Parámetros métricos para la determinación de sexo en restos esqueletales chilenos modernos. Chungara, 46(2), 285-293. ]

Gilbert, B. M. & McKern, T. W. (1973). A method for aging the female os pubis. American Journal of Physical Anthropology , 38(1), 31-38. ]

Gómez, A., Vázquez, A. & Macías, J. (2007). Evidencias de prácticas rituales en La Quemada, Zacatecas: análisis de un osario. Estudios de Antropología Biológica, XII(1), 431-446. [ Links ]

Gómez-Valdés, J. A., Menéndez Garmendia, A., García-Barzola, L., Sánchez-Mejorada, G., Karam, C., Baraybar, J. P. & Klales, A. (2017). Recalibration of the Klales et al. (2012) method of sexing the human innominate for Mexican populations. American Journal of Physical Anthropology , 162(3), 600-604. ]

Gómez-Valdés, J. A., Quinto-Sánchez, M., Menéndez Garmendia, A., Veleminska, J., Sánchez-Mejorada, G. & Bruzek, J. (2012). Comparison of methods to determine sex by evaluating the greater sciatic notch: Visual, angular and geometric morphometrics. Forensic Science International , 221(1-3), 7-10. ]

González, L. A. (2017). Un Análisis Acerca de las Condiciones de Vida y Salud de un Grupo de Habitantes de La Mesa, Hidalgo Durante el Periodo Epiclásico (600-700/750 d.c). Ciudad de México: Instituto Nacional de Antropología e Historia - ENAH. [ Links ]

González-Licón, E. (2011). Desigualdad Social y Condiciones de Vida en Monte Alban, Oaxaca (1st ed.). Ciudad de México: Instituto Nacional de Antropología e Historia - ENAH . [ Links ]

Green, H. & Curnoe, D. (2009). Sexual dimorphism in Southeast Asian crania: A geometric morphometric approach. HOMO, 60(6), 517-534. ]

Guyomarc’h, P., Velemínská, J., Sedlak, P., Dobisíková, M., Švenkrtová, I. & Brůžek, J. (2016). Impact of secular trends on sex assessment evaluated through femoral dimensions of the Czech population. Forensic Science International , 262, 284.e1-284.e6. ]

Hernández, P. O. (2006). Entre flores y chinampas: La salud de los antiguos habitantes de Xochimilco. In L. Márquez-Morfín and P. O. Hernández (Eds.), Sociedad y Salud en el México Prehispánico y Colonial (pp. 327-366). Ciudad de México: Instituo Nacional de Antropología e Historia. [ Links ]

Instituto Nacional de Estadística y Geografía (INEGI). (30 de noviembre de 2021). Censo General de Población y Vivienda 2010. ]

İşcan, M. Y., Loth, S. R., King, C. A., Shihai, D. & Yoshino, M. (1998). Sexual dimorphism in the humerus: A comparative analysis of Chinese, Japanese and Thais. Forensic Science International , 98(1-2), 17-29. ]

İşcan, M. Y., Loth, S. R. & Wright, R. K. (1984). Age estimation from the rib by phase analysis: white males. Journal of Forensic Sciences , 29(4), 1094-1104. [ Links ]

İşcan, M. Y., Loth, S. R. & Wright, R. K. (1985). Age estimation from the rib by phase analysis: white females. Journal of Forensic Sciences , 30(3), 853-863. ]

Jiménez-Arenas, J. (2010). Discriminación de sexo en una población medieval del Sur de la Península Ibérica mediante el uso de variables simples. International Journal of Morphology, 28(3), 667-672. [ Links ]

Knapp, T.R. (1992). Technical error of measurement: A methodological critique. American Journal of Physical Anthropology , 87(2): 235-236. ]

Kranioti, E. F. & Michalodimitrakis, M. (2009). Sexual dimorphism of the humerus in contemporary Cretans. A population-specific study and a review of the literature. Journal of Forensic Sciences , 54(5), 996-1000. ]

Langley, N. R., Jantz, M. L., Ousley, S. D., Jantz, R. L. & Milner, G. R. (2016). Data Collection Procedures for Forensic Skeletal Material 2.0. (3rd ed.). Knoxville: The University of Tennessee Department of Anthropology and Forensic Anthropology Center. [ Links ]

López Alonso, S. (1967). Las Funciones Discriminantes en la Determinación Sexual de los Huesos Largos. Ciudad de México: Escuela Nacional de Antropología e Historia. [ Links ]

Machado, D & Urgellés, L. (2011). Funciones discriminantes para la estimación del sexo a partir del húmero en europoides cubanos. Anales de Antropología, 45(1), 99-112. [ Links ]

Marlow, E. J. & Pastor, R. F. (2011). Sex determination using the second cervical vertebra. A test of the method. Journal of Forensic Sciences , 56(1), 165-169. ]

Márquez-Morfín, L. & Meza, M. (2015). Sífilis en la Ciudad de México: análisis osteopatológico. Cuicuilco, 22(63), 89-126. [ Links ]

Mazza, B. (2016). Determinación sexual en huesos largos de miembros superiores e inferiores para sociedades cazadoras-recolectoras del sector meridional de la cuenca del Plata, Argentina. Revista Española de Antropología Física, 37(1), 12-27. [ Links ]

Mckern, T. W. & Stewart, T. D. (1957). Skeletal Age Changes in Young American Males, Analysed from the Standpoin of Age Identification. Technical Report EP-45. Natick: Headquarters Quartermaster Research & Development Command. [ Links ]

Medrano, A. (1999). La Actividad Ocupacional y la Persona Social en San Gregorio Atlapulco, Xochimilco: Época Prehispánica, 1350, 1521 D.C. Ciudad de México: Escuela Nacional de Antropología e Historia . [ Links ]

Menéndez Garmendia, A., Gómez-Valdés, J. A., Hernández, F., Wesp, J. K. & Sánchez-Mejorada, G. (2014). Long bone (humerus, femur, tibia) measuring procedure in cadavers. Journal of Forensic Sciences , 59(5), 1325-1329. ]

Meza, A. & Báez, S. (1994). Paleopatología y demografia en el Hospital Real de los Naturales. In De Fragmentos y Tiempos: Arqueología de Salvaento en la Ciudad de México (pp. 53-68). Ciudad de México: Subdirección de Salvamento Arqueológico. [ Links ]

Milner, G. R. & Boldsen, J. L. (2012). Humeral and femoral head diameters in recent White American skeletons. Journal of Forensic Sciences , 57(1), 35-40. ]

Moore, M. K., DiGangi, E. A., Niño Ruíz, F. P., Hidalgo Davila, O. J. & Sanabria Medina, C. (2016). Metric sex estimation from the postcranial skeleton for the Colombian population. Forensic Science International , 262, 286.e1-286.e8. ]

Ostrofsky, K. R. & Churchill, S. E. (2015). Sex determination by discriminant function analysis of lumbar vertebrae. Journal of Forensic Sciences , 60(1), 21-28. ]

Paciulli, L. M. (2017). Sexual dimorphism (nonhuman primates). In A. Fuentes (Ed.), The International Encyclopedia of Primatology (pp. 1-4). Hoboken, NJ, USA: John Wiley & Sons, Inc. ]

Parsons, J., Brumfiel, E., Parsons, M. & Wilson, D. (1982). Prehispanic settlement patterns in the Southern Valley of Mexico: The Chalco-Xochimilco Region. Memoirs of the Museum of Anthropology No. 14. Michigan: University of Michigan Press. [ Links ]

Phenice, T. W. (1969). A newly developed visual method of sexing the os pubis. American Journal of Physical Anthropology , 30(2), 297-301. ]

Plavcan, J. M. (2001). Sexual dimorphism in primate evolution. American Journal of Physical Anthropology , 116(S33), 25-53. ]

Plavcan, J. M. (2012). Sexual size dimorphism, canine dimorphism, and male-male competition in primates. Human Nature, 23(1), 45-67. ]

Rosique, J., Ospina, C. & Muñoz, P. (2004). Estudio cuantitativo del dimorfismo sexual en restos óseos de la población de Medellín. Actualidades Biológicas, 26(1), 50-59. [ Links ]

Ruíz, J. (2020). Pervivencia y Cambio en Toniná, Chiapas: Nuevas Evidencias Óseas del Sacrificio Humano en el Umbral del Posclásico Maya. Ciudad de México: Universidad Nacional Autónoma de México . [ Links ]

Ruíz, J., Serrano, C. & Rivero, S. (2016). Manejo postsacrificial del cuerpo humano: evidencias e implicaciones rituales en un entierro del Clásico Terminal en Lagartero, Chiapas. Estudios de la Cultura Maya, 48(1), 71-99. [ Links ]

Ruiz Albarrán, P. (2019). ¿Tratamiento funerario o sacrificio? El caso de la ofrenda 153 del Templo Mayor de Tenochtitlan. In L. López-Luján and X. Chávez (Eds.), Al pie del Templo Mayor de Tenochtitlan. Estudio en Honor de Eduardo Matos Moctezuma (Volúmen II) (pp. 33-60). Ciudad de México: El Colegio Nacional. [ Links ]

Spradley, M. K., Anderson, B. E. & Tise, M. L. (2015). Postcranial sex estimation criteria for Mexican Hispanics. Journal of Forensic Sciences , 60(1), S27-S31. ]

Spradley, M. K. & Jantz, R. L. (2011). Sex estimation in forensic anthropology: Skull versus postcranial elements. Journal of Forensic Sciences , 56(2), 289-296. ]

Tague, R. G. & Lovejoy, C. O. (1998). AL 288-1-Lucy or Lucifer: gender confusion in the Pliocene. Journal of Human Evolution, 35(1), 75-94. ]

Tiesler, V. (2007). Funerary or nonfunerary? New references in identifying ancient Maya sacrificial and postsacrificial behaviors from human assemblages. In V. Tiesler and Cucina (Eds.), New Perspectives on Human Sacrifice and Ritual Body Treatments in Ancient Maya Society (pp. 14-44). New York, NY: Springer. ]

Tiesler, V., Romano-Pacheco, A., Gómez-Valdés, J. & Daneels, A. (2013). Posthumous body manipulation in the Classic Period Mixtequilla: Reevaluating the human remains of Ossuary I from El Zapotal, Veracruz. Latin American Antiquity, 24(1), 47-71. ]

Tise, M. L., Spradley, M. K. & Anderson, B. E. (2013). Postcranial sex estimation of individuals considered Hispanic. Journal of Forensic Sciences , 58(1), 9-14. ]

Torres, G., Menéndez Garmendia, A., Sánchez-Mejorada, G. & Gómez-Valdés, J. A. (2020). Estimación del sexo con metacarpos y metatarsos para población mexicana. Revista Española de Medicina Legal , 46(1), 12-19. ]

Universidad Nacional Autónoma de México. (30 de noviembre de 2021). Reglamento de seguridad y coordinación en materia de investigación para la salud de la UNAM. ]

Vargas, L. A., Ramírez, M. E. & Flores, L. (1973). El dimorfismo sexual en fémures mexicanos modernos. Anales de Antropología , 10, 329-336. [ Links ]

Walrath, D. E., Turner, P. & Bruzek, J. (2004). Reliability test of the visual assessment of cranial traits for sex determination. American Journal of Physical Anthropology , 125(2), 132-137. ]

White, T. & Folkens, P. (2005). The Human Bone Manual. Burlington: Academic press. ]

Nota del artículo: No se contó con financiamiento en este trabajo

Recibido: 22 de Enero de 2021; Aprobado: 31 de Mayo de 2021

Correspondence to: Antinea Menéndez Garmendia, M.A. Circuito Interior, Ciudad Universitaria, Coyoacán, CDMX 04510, México. E-mail:

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License