SciELO - Scientific Electronic Library Online

 
vol.26 número1PrólogoNuevos aportes isotópicos para secuencias carbonáticas del Precámbrico superior (Formación Las Tienditas) del NO de Argentina: su implicancia en la evolución de la Cuenca Puncoviscana índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

  • No hay articulos citadosCitado por SciELO

Links relacionados

  • No hay articulos similaresSimilares en SciELO

Compartir


Serie correlación geológica

versión On-line ISSN 1666-9479

Ser. correl. geol. vol.26 no.1 San Miguel de Tucumán ene./jun. 2010

 

EDIACARANO-CÁMBRICO EN GONDWANA OCCIDENTAL

Provenance of the Ediacaran-Early Palaeozoic Arroyo Del Soldado Group (Uruguay) and the Nama Group (Namibia): Geodynamic Implications for the SW- Gondwana amalgamation

Gonzalo Blanco1

1Department of Geology, University of Johannesburg, PO Box 524, Auckland Park 2006, Johannesburg, South Africa. E-mail: blancogonzalo2@hotmail.com

Abstract: The petrographic, heavy mineral analyses and geochemical results from the Nama Group indicate a recycled upper crust composition  characterized mainly by metamorphic and granitic and minor mafic rocks sources. Paleocurrent analyses of the  chromian spinel bearing sandstones of the Nama Basin point to a volcanic island arc source located in the Damara  Belt. Detrital zircon dating of the Nama Group display major peaks of Neoproterozoic and Mesoproterozoic ages  suggesting a provenance from the Damara/Gariep Belts and their basements. Paleocurrents from the west and the  dominance of Neoproterozoic-Cambrian detrital U-Pb zircon ages (76%) in the "Molasse" stage of the foreland  evolution probably indicate exhumation of the felsic volcanic arc root which probably occurred after the time  indicated by the younger zircon dated at 531 ±9 Ma. The petrographic and geochemical results from the Arroyo  del Soldado Group indicate a recycled upper crust composition characterized by source diversity composed of  granite-gneissic and mafic-metamorphic rocks. On average, Nd isotopes account for negative eNd values and TDM ages in a range of variation found elsewhere within SW Gondwana. Detrital U-Pb zircon dating indicate sources  dominated by Paleoproterozoic (1.7-2.0-2.2 Ga) and subordinate Archaean ages (2.5-2.9-3.5 Ga). The scarcity of  Mesoproterozoic and Neoproterozoic zircons and paleocurrent directions towards the east indicate that the Arroyo  del Soldado Group was fed by detritus from the Río de la Plata Craton favouring a passive margin tectonic setting  for their deposition. Deformation of the Arroyo del Soldado Group took place ca. 530 Ma, after strike-slip collision. 

Key words: Ediacaran; Nama Group; Arroyo del Soldado Group; Provenance; SW Gondwana.

Resumen: Procedencia del grupo Arroyo del Soldado (Uruguay) y el grupo Nama (Namibia): Implicaciones geodinámicas para el SW de la amalgamación del Gondwana. Los resultados de petrografía, análisis de minerales  pesados y geoquímica del Grupo Nama se caracterizan por una composición similar a la corteza continental  superior reciclada con fuentes principalmente metamórficas-graníticas y con un componente máfico subordinado.  Paleocorrientes de areniscas que contienen spinelos cromíferos pertenecientes a la Cuenca Nama indican una fuente  localizada en el cinturón Damara. Edades U-Pb de circones detríticos del Grupo Nama muestran que los picos más  importantes son Neoproterozoicos y Mesoproterozoicos y sugieren una proveniencia de los cinturones Damara- Gariep y sus basamentos. Paleocorrientes desde el oeste en los sedimentos molasicos de la Cuenca Nama y edades  U-Pb en circones detríticos correspondientes al Neoproterozoico-Cambriano (76%) indican probablemente una  fuente proveniente de una raíz de arco volcánico de composición félsica exhumada luego de la edad indicada  por el circón mas joven que es de 531 ±9 Ma. La petrografía y los resultados geoquímicos del Grupo Arroyo del  Soldado indican una composición comparable a la corteza continental superior reciclada y se caracteriza por una  diversidad de fuentes granítico-gnéisica y rocas maficas metamórficas. En promedio isótopos de Nd presentan  valores negativos de eNd y edades TDM similares a las encontradas en el Gondwana. Edades U-Pb en circones detríticos indican fuentes principalmente Palaeoproterozoicas (1.7-2.0-2.2 Ga) y subordinadamente Arqueanas (2.5- 2.9-3.5 Ga). La escasez de circones detríticos Meso-Neoproterozoicos y paleocorrientes hacia el este indican que  el Grupo Arroyo del Soldado fue alimentado con detritos del cratón del Río de la Plata favoreciendo un ambiente  geotectónico de margen pasivo para su depositación. Deformación del Grupo Arroyo del Soldado ca. 530 Ma  ocurrió luego de colisión tangencial con un terreno de afinidad Africana. Finalmente la evolución paleogeografica  basada en el análisis de proveniencia de la Cuenca Nama y la Cuenca del Grupo Arroyo del Soldado sugiere que  la amalgamación del los cratones Kalahari/Congo con el cratón del Río de la Plata y el terreno Cuchilla Dionisio  Pelotas (Arachania) ocurrió probablemente por acrecíon tangencial relacionado a un componente de esfuerzos N-S  en un periodo durante 530 a 495 Ma.

Palabras clave: Ediacarano; Grupo Nama; Grupo Arroyo del Soldado; Procedencia; SW Gondwana.

Introducción

The amalgamation of SW Gondwana in the Neoproterozoic early Paleozoic resulted  from a series of tectonic events related to the subduction of oceanic lithosphere, collision  of continental blocks, mantle plume activity and accretion of exotic terranes, within the Pan- African Brasiliano Belts (e.g. Dalla Salda, 1982; Germs, 1983, 1995; Unrug, 1996; Cordani  et al., 2000; Basei et al., 2000; 2005; Bossi and Gaucher, 2004; Gray et al., 2006) (Figure 1A- B). Recent geochronological studies in the Pan-African and Brasiliano Belts indicate that  the assembly of SW Gondwana was only completed by the end Cambrian and/or early  Ordovician but their tectonic evolution remains controversial (e.g. Babinski et al., 1996; Seth  et al., 1998; Jung et al., 2000; Schmitt et al., 2004; Saalmann et al., 2005a-b, 2006; Gray et al.,  2006; Borba et al., 2006; Goscombe et al., 2007; Rapela et al., 2007; Gaucher et al., 2008a, 2009;  Blanco et al., 2009a-b).

Figure 1. Pan-African/Brasiliano orogenic belts and Ediacaran early Palaeozoic basins in southwestern Gondwana  (modified after Gresse et al., 1996; Trompette, 1997; Gaucher et al., 2005).  (A) GB: Gariep Belt, SB: Saldania Belt, DB: Damara Belt, NB: Nama Basin, ASB: Arroyo del Soldado Basin, SBB:  Sierras Bayas Basin, CB: Camaquã Basin, SP: Sierras Pampeanas, CrB: Corumbá Basin, RB: Ribeira Belt, KB: Kaoko  Belt, WCB: West Congo Belt, PB: Paraguay Belt, BB: Brasilia Belt, BP: Borborema Province, CDPT: Cuchilla  Dionisio-Pelotas Terrane.  (B) TT: Tandilia Terrane, PA: Piedra Alta Terrane, NP: Nico Pérez Terrane, PET: Punta del Este Terrane, RB:  Rivera Block. ICR: Isla Cristalina de Rivera, SGA: São Gabriel Arc, PB: Porongos Belt, SBCMGSZ: Sierra Ballena- Canguçú-Major Gercino Shear Zone.

The Ediacaran to Cambrian Arroyo del Soldado Group (ASG) is a passive margin  sedimentary sequence, preserved in a key area of the Río de la Plata Craton (RP) and was  probably deposited before strike-slip collision with a crustal fragment with African affinity  named the Cuchilla Dionisio-Pelotas Terrane (Bossi and Gaucher, 2004; Gaucher et al.,  2008a) (Figure 2 A-C), part of the newly defined Arachania (Gaucher et al., 2009a-d). In  Namibia, the Neoproterozoic-early Palaeozoic Nama Group sediments can be interpreted as  deposited in a peripheral foreland basin related to the Damara Belt and as an intracratonic  or retroarc foreland basin to the Gariep Belt (Germs, 1995; Basei et al., 2005) (Figure3-4-5).  The Damara Orogen (Kaoko, Gariep and Damara Belts) itself is understood to represent  a collisional triple junction (e.g. Prave, 1996; Trompette, 1997; Frimmel and Frank, 1998)  but the geological evolution with the Río de la Plata Craton and the tectonic-setting of their  sedimentary basins is a question of debate.


Figura 2.  (A) Neoproterozoic-Cambrian (volcano) sedimentary successions in Uruguay, pre-Ediacaran basement  rock of the ASG and some important intrusive granites. Numbers indicates the sample location. ICR: Isla Cristalina  de Rivera, FDS: Florida Dyke Swarm (1.8 Ga), A: Archaean, PP: Palaeoproterozoic, M: Mesoproterozoic, NP:  Neoproterozoic, C: Cambrian, NPDS: Nico Pérez Dyke Swarm (0.6 Ga). Modified after Bossi et al. (2005), Gaucher  (2000) and Hartmann et al. (2001). Numbers represent the sampled localities.  (B) Synthetic stratigraphic column of the ASG, after Gaucher (2000). BN Fm.: Barriga Negra Formation, C. Esp:  Cerro Espuelitas Formation, CSF: Cerros San Francisco Formation, C.V. Fm.: Cerro Victoria Formation.  (C) Cross section A-A', modified after Gaucher (2000). 1: Piedra Alta Terrane (2.0-2.2 Ga) 2: Illescas Rapakivi  Granite (1.75 Ga), 3: Valentines Formation (2.1-2.6 Ga), 4: Archaean Basement (2.6-3.4 Ga), 5: Arroyo del Soldado  Group, a: Cerro Victoria Formation, b: Cerros San Francisco Formation, c: Cerro Espuelitas Formation, d: Barriga  Negra Formation, e: Polanco Formation, f: Yerbal Formation, 6: Carapé Group (ca. 1.7 Ga), and Neoproterozoic  Granites, 7: Aiguá Batholith (~0.6 Ga), 8: High grade gneisses (2.0-0.8 and 1.0 Ga), 9: Rocha Group, 10: post- tectonic granites (~550 Ma). SYPSZ: Sarandí del Yí Shear Zone, CPT: Cerro Partido Thrust, SBSZ: Sierra Ballena  Shear Zone, CSZ: Colonia Shear Zone.


Figure 3. Regional map showing the location of the Nama Group, the Damara and Gariep Belts and the working  area. Modified after Saylor et al. (1995). CZ: Central Zone, SZ: Southern Zone, SMZ: Southern Marginal Zone, RBI:  Rehobot Basement Inlier, NSZ: Nam Shear Zone. Cross sections A-A' and B-B' are shown in figure 4. Circled- numbers represent the different localities selected for sampling.


Figure 4. (A) Cross section of the southern Damara Belt, modified after Hoffman (1994) and Prave (1996). (B)  Crustal architecture of the Gariep Belt modified after Gray et al. (2006), Frimmel and Frank (1998). Location of the  A-A' and B-B' cross sections are shown in figure 3.


Figure 5. Stratigraphic columns from the Zaris sub-basin (north of Osis ridge) and Witputs sub-basin (south of  Osis ridge) and their palaeocurrents average of the Nama Group, after Germs (1983). Ages represent tuff layers  dated by Grotzinger et al. (1995) and palaeontological data after Germs (1972a). 

The purpose of this study is to analyses the main provenance characteristics with  emphasis in the single grain U-Pb zircon data of the Nama Group and compare with the  Arroyo del Soldado Group and present a paleogeographic model for the amalgamation of  SW Gondwana (Blanco, 2008). 

Early Rifting of the Kalahari and Congo Cratons and  Subduction in the RPC

Rifting at 746 ±2 Ma (Hoffman et al., 1996) and deposition of extensive passive margin  platform successions characterize the opening of the Khomas Sea, which started with the  separation of the Kalahari and Congo/Angola Cratons and the generation of oceanic crust.  A minimum age for rifting in the Gariep Basin can be constrained from U-Pb zircon age of  771 ±6 Ma from rift-related rhyolites (Frimmel et al., 2001) which formed from the opening  of a back-arc type basin in the Kalahari Craton (Basei et al., 2005). Extensive siliciclastic  deposits are represented by the upper part of the Port Nolloth Group on the western side  of the Kalahari Craton (Figure 2A; Frimmel and Frank, 1998).

Contemporaneously with the rifting event within the Kalahari Craton, the volcanic São  Gabriel Arc was likely accreted to the RPC at ca. 700-750 Ma and was part of an active  margin (Figure 1B; Babinski et al., 1996; Saalmann et al., 2005). 

RPC Rifting and Provenance of the Post-rift Arroyo  del Soldado Group

An extensional or rift event and deposition of the bimodal volcano-sedimentary Las  Ventanas Formation between 615 to 580 Ma (Blanco and Gaucher, 2005; Gaucher et al.,  2008b), is accompanied by the emplacement of the Nico Pérez Dyke Swarm at 581 ±14 Ma (Rivalenti et al., 1995). Intraplate magmatism at around 590 ±2 Ma in the southern  Nico Pérez Terrane (Mallmann et al., 2007) could be related to the above mentioned dyke  swarm. This extensional event probably resulted in the opening of the Brazilides Ocean and  separated the RPC from Arachania (Gaucher et al., 2009) to form a large rifted margin along  the eastern border of the RPC (Gaucher et al., 2008b). Deposition of the Yerbal and Polanco  Formations (lower Arroyo del Soldado Group, ~560 Ma; Figure 6A) took place along the  eastern border of the Río de la Plata Craton, wherefrom the main input of detrital material  occurred (Blanco et al., 2009a).

Figure 6. Palaeogeographic evolution of SW Gondwana between 580 and 490 Ma. See text for explanation and references.

Recently Oyhantçabal Oyhantçabal et al. (2009) obtained a U-Pb SHRIMP age of 573 ±11 Ma for ehudral zircon grains of a volcaniclastic rock of Las Ventanas Formation in agreement to the age assigned by Blanco and Gaucher (2005) and Gaucher et al. (2008b) based on the finds of microfossils and their biostratigraphycal analysis which was previously assumed as Ordovician by Sanchez-Bettucci et al. (2003). Oyhantçabal et al 2009, argue in favour on a evolution Oyhantçabal et al 2009, argue in favour on a evolution from back-arc to a foreland basin for the tectonic setting of the Las Ventanas Formation and ASG respectively and the subduction to the west beneath the RPC (retroarc foreland basin). In this hypothetical scenario the most important detrital zircon peaks of the ASG Group must show a Neoproterozoic signature derived from the magmatic arc as happened with Nama Group (Blanco 2008; Blanco et al., 2009b) or others foreland basins elsewhere. The inferred mollase sedimentation attending the hypothesis supported by Sanchez-Betucci et al. (2001) implies an uplift and exposure of the hypothetical source area represented by the Aiguá Batholith and their basement (Dom Feliciano Belt) feeding the Arroyo del Aiguá Batholith and their basement (Dom Feliciano Belt) feeding the Arroyo del Soldado Basin (see below). Typically the development of a mollase sequences in a foreland setting shows the evolution from marine to continental sedimentation and not the opposite as in the case of the Las Ventanas Formation and the overlying ASG. Notwithstanding that the geotectonic setting proposed by Sanchez-Bettucci et al. (2001, 2003) is based in the geochemistry analyses of metamorphosed volcanic rocks assigned to Lavalleja Group, which is of uncertain stratigraphic position, showing Neoproterozoic, Mesoproterozoic and Archaean ages (Mallman et al., 2007; Bossi and Cingolani, 2009).

Different hypotheses have been put forward to explain this extensional event, such  as slab-break off after the main magmatic event that occurred in the Brasiliano Orogeny  around 650-600 Ma (Chemale Jr., 2000), or to plume activity as proposed by Gaucher et  al. (2009a). The passive margin characteristics of the Yerbal Formation are suggested  based on petrography, whole-rock geochemistry, Sm-Nd isotope geochemistry and detrital  zircon dating. A provenance from the west, from the basement rocks of the RPC Craton  is indicated for the Yerbal Formation as demonstrated by palaeocurrents and the dominant  Palaeoproterozoic zircon population (2.0-2.1 Ga) but also a minor Mesoproterozoic  population is recorded (Gaucher et al., 2008; Blanco et al., 2009a). Close to the western  border of the RPC the Pie de Palo Complex in the Western Sierras Pampeanas (Figure 1A) is  exposed and is one probable source of Mesoproterozoic zircons for the Yerbal Formation,  and may have been autochthonous to the proto-Andean margin of Gondwana (Ramos,  2000; Galindo et al., 2004; Mulcahy et al., 2007). Geochemical proxies (McLennan et al.,  1993) used to analyze the Yerbal Formation characterized a basin where recycling played  the most important role (e.g. Eu/Eu*~0.6, Th/Sc >1, Th/U >5) which is petrographically  supported by the absence of volcanogenic detritus. Arc-related geochemical signatures were  only detected in the northernmost part of the basin, which were probably a consequence  of sediment supply derived from the São Gabriel Arc (ICR, Figure 1B). In the rest of the  basin, negative (average -12) and Palaeoproterozoic T ages were observed. Up section, deposition of the Polanco Formation, a continuous carbonate plataform (900 m in thickness) indicates the development of a stable shelf that becomes deeper to the east (Gaucher et al., 2003). Conglomerates of the the Barriga Negra Formation transitionally overlie the Polanco Formation. The Barriga Negra Formation was deposited after 566 Ma based on the youngest detrital zircon analyzed. Due to the immature characteristics of the Barriga Negra Formation sediments, the sources can be traced mainly to the Archaean, Palaeoproterozoic and Neoproterozoic rocks in the Nico Pérez Terrane. The obtained Neoproterozoic zircon population shows ages between 566 ±8 and 631 ±12 Ma (29%), which are probably related to magmatism and associated anorogenic granitoids in the above mentioned Nico Pérez Terrane (Blanco and Gaucher, 2005; Gaucher et al., 2009d). Climatic or tectonic (rifting?) causes could explain the deposition of conglomerates filling palaeovalleys as a consequence of sea- level oscillations (Gaucher, 2000). Deposition of the partly coarse-grained sediments of the Deposition of the partly coarse-grained sediments of the Barriga Negra Formation indicate strong palaeorelief and a sea level fall as a consequence of a late Ediacaran non-global ice age characterized by a negative d13C excursion (Gaucher et al., 2005a; Gaucher et al., 2008c; Gaucher and Poiré, 2009a). The overlying Cerro Espuelitas Formation comprises thick marine chemical and fine clastic deposits (>2000 m in thickness). chemical and fine clastic deposits (>2000 m in thickness). (>2000 m in thickness). . The large amount of chemical sediments indicates that the clastic input to the shelf was low due to a sea level highstand (Gaucher, 2000). The unit is geochemically comparable with unrecycled Upper Continental Crust, shows negative eNd (t) values with Nd model ages of 2.1 Ga and was probably derived from Palaeoproterozoic rocks of the RPC (Hartman Ga and was probably derived from Palaeoproterozoic rocks of the RPC (Hartman et al., 2001), suggesting that it was deposited in a passive margin setting. In the RPC during the lowermost Cambrian, the super-mature quartz-arenites of the Cerros San Francisco Formation and dolostones of the Cerro Victoria Formation were deposited on a shallow marine platform (Gaucher et al., 2007). Detrital zircon populations and the TDM ages of the Cerros San Francisco Formation (Gaucher et al., 2008a, Blanco et al., 2009a) can be traced to the Archaean and Palaeoproterozoic basement rocks of the RPC (Hartman et al., 2001). In the Tandilia Tarrane, the Sierras Bayas Group (Figure 1B) is correlative with the Nama Group and the ASG on basis of their litho-, chemo- and biostratigraphy and were deposited in a passive margin tectonic setting (Dalla Salda et al., 2006; Gaucher et al., 2005b, 2008a; Gaucher and Poiré, 2009b; Bossi and Cingolani, 2009). Thus, the palaeogeographic model recently proposed by Rapela et al. (2007) showing the RPC attached to the Kalahari Craton between 550 and 540 Ma is in contradiction with the data presented in this work.

Cuchilla Dionisio-Pelotas Terrane and the Kalahari Craton Connection

The Gariep Belt is correlative with the eastern side of the Cuchilla Dionisio-Pelotas  Terrane in Uruguay (Figures 1B and 3B; Punta del Este Terrane), both of which share a  Namaqua-age basement and are part of Arachania (Preciozzi et al., 1999; Bossi and Gaucher,  2004; Basei et al., 2005; Gaucher et al., 2009). The Rocha Group in the Punta del Este Terrane  (Figures 1 and 2A-C) and the Oranjemund Group in the Marmora Terrane (Figures 2 and 7B)  are correlative based on very similar detrital zircon age population patterns (Basei et al., 2005).  Both units were deposited between 600 and 550 Ma and are characterized by a common  provenance mostly derived from the Namaqua-age basement and the Neoproterozoic arc  granites (Figure 7B; Basei et al., 2005). The youngest ages obtained from detrital zircons in  both groups (~600 Ma) indicate derivation from Arachania (Basei et al., 2005; Gaucher et  al., 2009). Syn-collisional to late orogenic granite emplacement was very intense and rather  continuous in the interval between 680-550 Ma in Arachania (Preciozzi et al., 1999; Gaucher  et al., 2009). Two main metamorphic events recorded in the Chameis Group of the Marmora  Terrane occurred at ca. 575 Ma and 545 Ma (Frimmel and Frank, 1998). Extrusive magmatism  is represented in the Cuchilla Dionisio Terrane by pyroclastic rocks and dacites of the Cerros  Aguirres Formation that yielded a U-Pb SHRIMP age of 572 ±8 Ma (Hartmann et al., 2002;  Figure 2A). It is clear that the Cuchilla Dionisio-Pelotas Terrane is an allochtonous block  and probably accreted to the RPC ca. 530 Ma, after the deposition of the ASG (Bossi and  Gaucher, 2004). In the RPC the Lower Cambrian, passive margin deposits of the Cerros San  Francisco Formation contain no Mesoproterozoic zircons (of a total of 135 analyzed grains;  Gaucher et al., 2008a, Blanco et al., 2009a). There is a conspicuous absence of Neoproterozoic  zircons derived from the magmatic arc represented by the batholiths in the Cuchilla Dionisio  Pelotas Terrane, developed between 550 and 650 Ma (Figures 6B-C). In the Figure 8 note  the similar age distribution between the Rocha Formation and Nama Group (see below)  compared with the ASG.


Figure 7. (A) Schematic N-S cross section of the Damara Belt showing the main areas of sediment supply for  the upper Nama Group. RBI: Rehobot Basement Inlier. (B) Proposed location of the Río de la Plata and Kalahari  Cratons at ca. 530 Ma based on provenance data of the Arroyo del Soldado and Nama Basins. CDPT: Cuchilla  Dionisio-Pelotas Terrane. SBCMG: Sierra Ballena-Canguçú-Major Gercino Shear Zone.


Figure 8. Detrital zircon age spectra for the Arroyo del Soldado and Nama groups and Rocha Formation, after  Blanco et al. (2010). Samples MIN 14 and SOL 18 from Gaucher et al. (2008a), SF and YF from Blanco et al. (2009a),  32710 from Basei et al. (2005) and those of the Nama Group from Blanco (2008). Note the radical difference  between the source areas of samples from the ASG (Río de la Plata Craton) and those of the Rocha Formation and  Nama Group (Arachania and Kalahari Craton).

The Provenance of the Nama Foreland Basin

At ca. 550 Ma the deposition the lower Nama Group began (Grotzinger et al., 1995).  The Kuibis Subgroup (Figure 5) unconformably overlies various stratigraphic units of the  Neoproterozoic Porth Nolloth Zone in the Gariep Belt and its Mesoproterozoic Namaqua- Natal basement (Germs, 1972a-b-c, 1974, 1995; Germs and Gresse, 1991; Frimmel and Frank,  1998). During early Nama depositional times (Kuibis and lower Schwarzrand Subgroups) the  foreland basin consisted of three sub-basins separated by the northern Osis (Figure 3) and  southern Kamieskroon Arches, which probably represented forebulges (Germs and Gresse,  1991). The lower Nama Group received material predominantly from the eastern Kalahari  Craton although palaeocurrents had changed during deposition of the northern Nudaus  Formation, when sediment transport took place from a north-northwestern source in the  Damara Belt (Figures 3, 4A and 5; Germs, 1983). However, during late Nama depositional  times (upper Fish River Subgroup) these arches lost their importance and the detrital  material was shed from northern sources into one major foreland basin (Germs and Gresse,  1991). The sediments of the Stockdale and Breckhorn Formations of the lower Fish River  Subgroup were supplied from the west, and according to Germs (1983) most probably from  the Gariep Belt (Figure 4B).

The petrography of the Kuibis Subgroup sandstones shows a dominance of polycyclic  subfeldsarenites with a craton interior provenance, and agrees with the palaeocurrent analyses  made by Germs (1983) which imply a source mainly derived from the Kalahari Craton. The  geochemistry of the Kuibis Subgroup mudrocks (Th/Sc~0.6, Th/U~2.9 and Eu/Eu*~0.7)  show a volcanic arc signature, pointing to a provenance from a Mesoproterozoic mafic  basement in the case of the Witputs Sub-basin, which was recently documented in the Karas  Mountains by Evans et al. (2007). Contrasting, in the northern Zaris sub-basin, syn-tectonic  volcanic activity from the Gariep-Damara Belts could be the reason for an input of fine- grained volcanic material (Germs, pers. comm.).

Reid et al. (1991) dated a metamorphic amphibolite dyke emplaced during transpressional  tectonism in the Gariep Belt, yielding a 40Ar-3Ar age of 545 ±2 Ma and interpreted as  recording the continent-continent collision event. According to Frimmel and Frank (1998),  peak of metamorphism attained lower amphibolite facies conditions in the Port Nolloth  Zone, which was due to emplacement of the Marmora Terrane on top of the former.  Amphibolites from the Marmora Terrane yield hornblende 40Ar-3Ar plateau ages between  547 ±4 and 543 ±6 Ma, and therefore record the age of continent-continent collision  between the Río de la Plata and Kalahari Cratons (Frimmel and Frank, 1998). However, the  geochemical and petrographical data, as well as zircon dating presented for Nama Group  strata below the Nomtsas Formation (Blanco, 2008; Blanco et al., 2009b; Figure 5) could not  detect any collisional event to the west of the basin. Indicators such as Zr concentrations  >1000 ppm (UCC= 190 ppm; after McLennan et al., 2006), Th/Sc ratios up to 4.33 and Zr/ Sc ratios > 30, maximum 445, are indicative of extreme reworking. Detrital zircon ages for  the Urusis Formation from the Witputs and Zaris sub-basins indicate a derivation from the  Mesoproterozoic basement and the Neoproterozoic orogenic belts. Compressive tectonic  processes towards the west of the Nama Basin probably produced thin-skinned tectonics  reflecting small-scale movements rather than large-scale regional geological events.

The deposition of the upper Nama Group started with the Nomtsas Formation (539  Ma; Grotzinger et al., 1995), representing the first incursion of coarse fluvial deposits into  the basin (Germs, 1983; Germs and Gresse, 1991). Regional palaeocurrent directions for the  Zaris sub-basin indicate a main derivation from the Damara Belt, suggesting that uplift and  erosion were dominated by a continent-continent collision between the Kalahari and Congo  Cratons at the time of the Nomtsas Formation deposition (Germs, 1983; 1995). The Niep  Member (Nomtsas Formation) shows zircon populations dominated by Neoproterozoic and  Mesoproterozoic ages, displaying major peaks at 632, 902, 1057 and 1892 Ma. The input of  volcanic material is corroborated by the preserved volcanic lithoclasts, euhedral chromian  spinels and pyroxenes with inclusions of chromian spinel with a volcanic arc geochemical  signature (Blanco et al., 2009b). This detrital record can explain a slight shift of Th/Sc ratios  to values below 1 and slightly higher Eu/Eu* values (between 0.7 and 0.85) compared with the underlying units (Blanco, 2008). This shift could be explained by an influence of volcanic  rocks from the Damara Belt as indicated by the sediment supply from the north (Germs,  1983).

The deposition of the Fish River Subgroup "molasse" sediments in a fluvial to shallow  marine environment shows a palaeocurrent pattern derived from the west at the base, and  from the north towards the top of the subgroup (Germs, 1983). The subgroup originated  from reworked sediments of the Damara Orogen (Hortsmann et al., 1990), and shows extreme  recycling based on petrography and geochemistry (Blanco, 2008), the latter characterized by  high Th/Sc (~3), low to high Th/U (1.9-7.2) and negative Eu/Eu* values (~0.5). Zircon  dating performed in the Wasserfall Member of the lower Fish River Subgroup, clearly indicate  a dominance of Lower Cambrian and Neoproterozoic ages (76% of the analyzed zircons  with peaks at 546, 591 and 637 Ma), and the sedimentation cannot be older than 531 ±9 Ma.  Thus, the Wasserfall Member source probably was derived from the Neoproterozoic granites  of the Nico Pérez and Cuchilla Dionisio Terranes and the Cambrian felsic magmatism  associated with the latest movements of the Sierra Ballena-Canguçú-Major Gercino Shear  Zone located in southernmost Brasil and Uruguay. Most of the Neoproterozoic zircon  sources could be traced in the Cuchilla Dionisio-Pelotas Terrane (ca.550-650 Ma; Silva et al.,  1999) which was the feeder of the Wasserfall Member after the closure of the Rocha-Gariep  Basin according to the tectonic model presented by Basei et al. (2005). (Figures 6C and 7B).  Current lines of thinking indicate that the Kaoko and Gariep Belts and their counterpart,  the Cuchilla Dionisio-Pelotas Terrane, in South America have been parts of an active margin  with subduction beneath the Kalahari and Congo Cratons (Goscombe and Gray, 2007) and  is supported by the data presented in this work.

The petrographic and chemical analyses on black sands of the Haribes/Rosenhof  Members show the input of euhedral garnet from the Damara Belt and chromian spinels  with a MORB signature which was probably derived from the Matchless Amphibolites  (Blanco et al., 2006, 2009b), which is supported by palaeocurrents derived directly from the  north (Germs, 1983). The overthrusting and exhumation of different metamorphic rocks  point to the Damara Belt as the most probable source for the obtained Mesoproterozoic  zircon population (Figure 3A). The obtained Neoproterozoic zircon peaks (626, 592, 569 and  547 Ma) are probably related to the syn-tectonic granites of the Central Zone in the Damara  Belt (Figures 3A, 6A and 7B). Granitic plutonism within the Damara Belt is recorded over a  period of at least 150 Ma between ~620 and ~470 Ma (e.g. Kröner, 1982; Miller, 1983). 

Final Basins Closure And Amalgamation of the Kalahari and Río  de la Plata Crtatons

In the Damara Belt, the closure of the Khomas Sea is represented by the intrusion of  syn-tectonic granites between ca. 650 and 550 Ma and post-tectonic granites at ca. 500 Ma (Kröner, 1982; Miller, 1983; Jung, 2000; Johnson et al., 2006). The Cambrian-Ordovician  period is characterized by granitic intrusions, thrusting and deformation propagating onto the  Kalahari Craton to the south (Damara Belt) and east (Gariep Belt), from ~495 to ~480 Ma  (Germs and Gresse, 1991; Gresse and Sheepers, 1993), which probably was contemporaneous  with the closure of the southern Adamastor Ocean (Germs, 1995; Frimmel and Frank, 1998;  Gray et al., 2006). 

Deformation and Cambrian granitic intrusions took place in the ASG at ca. 530 Ma  in response to tangential collision between the Nico Pérez and Cuchilla Dionisio-Pelotas  Terranes probably as response of the Buzios Orogeny (Figure 2C; Bossi and Gaucher, 2004;  Gaucher et al., 2009a-b-c; Bossi and Cingolani, 2009). Moreover, Gray et al. (2006) suggested  thrusting in the Gariep Belt represents a shear zone reactivation due to the continent- continent collision of the Kalahari/Congo Cratons with the RPC. Recently, the Gariep Belt  was linked to the external branch of the Kaoko Belt (Coastal Terrane) and the Cuchilla  Dionisio-Pelotas Terrane, which has been affected by transpressional deformation related to  a component of N S shortening in the period between 530 and 495 Ma (Figure 6C; Gray et  al., 2006; Goscombe and Gray, 2007).

Acknowledgments

This publication forms part of the doctoral thesis of Gonzalo Blanco carried out at the Faculty of Science  (University of Johannesburg). I deeply appreciate the contribution and discussions of C. Gaucher, H.M. Rajesh, C.  Cingolani and G.J.B. Germs. F. Chemale Jr. and the Laboratório de Geologia Isotópica, (Instituto de Geociências,  Universidade Federal do Rio Grande do Sul) is gratefully acknowledgedfor the zircon and Sm-Nd isotopic data  measurements. Edition by Gilberto Aceñolaza is much appreciated. This is a contribution to IGCP 478.

Bibliography

1. Babinski, M., Chemale Jr., F., Hartmann, L.A., Van Schmus, W.R., da Silva, L.C., 1996. Juvenile accretion at 750-700 Ma in southern Brazil. Geology, 24 (5): 439-442.         [ Links ]

2. Basei, M., Siga, JR. O., Masquelin, H., Harara, O., Reis Neto, J., Preciozzi, E., 2000. The Dom Feliciano Belt of Brazil and Uruguay and its foreland domain, the Rio de la Plata Craton. In: Cordani, U., Milani, E., Thomaz Filho, A. and Campos, D. (Eds.), Tectonic evolution of South America. Rio Janeiro: 311-334.         [ Links ]

3. Basei, M.A.S., Frimmel, H.E., Nutman, A.P., Preciozzi, F., Jacob, J., 2005. A connection between the Neoproterozoic Dom Feliciano (Brazil/Uruguay) and Gariep (Namibia/South Africa) orogenic belts - evidence from a reconnaissance provenance study, Precambian Research 139: 195-221.         [ Links ]

4. Blanco, G., 2008. Provenance analysis of the Neoproterozoic-Cambrian Nama Group (Namibia) and the Arroyo del Soldado Group (Uruguay): Implications for the palaeogeographic reconstruction of SW Gondwana. Unpublished PhD thesis, University of Johannesburg, 299pp.         [ Links ]

5. Blanco, G., Gaucher, C., 2005. Estratigrafia, paleontologia y edad de la Formacion Las Ventanas (Neoproterozoico, Uruguay). Latin American Journal of Sedimentology and Basin Analysis, 12 (2): 109-124.         [ Links ]

6. Blanco, G., Rajesh, H.M., Gaucher, C., Germs, G.J.B., Chemale Jr., F., 2009a. Provenance of the Arroyo del Soldado Group (Ediacaran to Cambrian, Uruguay) and its implications for the paleogeographic evolution of southwestern Gondwana. Precambrian Research, 171: 57-73.         [ Links ]

7. Blanco, G., Rajesh, H., Germs, G.J.B., Zimmermann, U., 2009b. Chemical composition and tectonic setting of chromian spinels of the Ediacaran-early Paleozoic Nama Group, Namibia. Journal of Geology, 17: 325-341.         [ Links ]

8. Blanco, G., Zimmermann, U., Germs, G.J.B., Gaucher, C., 2006. Provenance study on "black sands": A case study from the Lower Cambrian Fish River Subgroup (Nama Group, Namibia). V South American Symposium on Isotope Geology, short paper, Punta del Este (CD-ROM) .         [ Links ]

9. Blanco, G., Rajesh, H.M., Gaucher, C., Germs, G.J.B., Chemale Jr., F., 2010. Reply to the comment by Sánchez Bettucci et al. on: "Provenance of the Arroyo del Soldado Group (Ediacaran to Cambrian, Uruguay): Implications for the paleogeographic evolution of southwestern Gondwana" [Precambrian Res. 171 (2009) 57-73]. Precambrian Research, 180: 334-342.         [ Links ]

10. Borba, W. A., Mizusaki, A.M.P., Andrade Da Silva, D.R., Koester, F., Casagrande, J., 2006. Provenance of the Neoproterozoic Maricá Formation (Sul-rio-grandense Shield, Southern Brazil): Petrographic and Sm-Nd isotopic constraints. Gondwana Research, 9: 464-474.         [ Links ]

11. Bossi, J., Gaucher, C., 2004. The Cuchilla Dionisio Terrane, Uruguay: an allochtonous block accreted in the Cambrian to SW-Gondwana. Gondwana Research, 7 (3): 661-674.         [ Links ]

12. Bossi, J., Piñeyro D., Cingolani, C., 2005. El límite sur del Terreno Piedra Alta (Uruguay). Importancia de la faja milonítica sinistral de Colonia. XVI Congreso Geológico Argentino, La Plata (CD-ROM).         [ Links ]

13. Bossi, J., Cingolani, C., 2009. Extension and general evolution of the Río de la Plata Craton. Neoproterozoic- Cambrian evolution of the Río de la Plata Palaeocontinent. In: Gaucher, C., Sial, A.N., Halverson, G.P., Frimmel, H.E. (Eds.): Neoproterozoic-Cambrian tectonics, global change and evolution: a focus on southwestern Gondwana. Developments in Precambrian Geology, 16, Elsevier: 73-85 pp.         [ Links ]

14. Chemale, E Jr., 2000. Evolução geologica do Escudo Sul-riograndense. In: Holz, M. and De Ros, L.E (Eds.), Geologia do Rio Grande do Sul. Porto Alegre: 133-160 pp.         [ Links ]

15. Cordani, U.G., Sato, K., Teixeira, W., Tassianri, C.C.G., Basei, M.A.S., 2000. Crustal evolution of the South American Platform, in: Cordani, U.G., Milani, E.J., Thomaz Filho, A., Campos, D.A. (Eds.), Tectonic Evolution of South America, 31st International Geological Congress, Rio de Janeiro, 19-40 pp.         [ Links ].

16. Dalla Salda, L., 1982. Nama-La Tinta y el inicio de Gondwana. Acta Geológica Lilloana, 16, (1): 23-28.         [ Links ]

17. Dalla Salda, L., Spalletti, L., Poiré, D., De Barrio, R., Echeveste, H., Benialgo, A., 2006. Tandilia. Temas de la Geología Argentina I. INSUGEO, Serie Correlación Geológica, 21: 17-46.         [ Links ]

18. Evans, D.M., Windrim, D.P., Armstrong, R.A., 2007. Age of Metavolcanic rocks at the northern margin of the Namaqua-Natal Metamorphic Province in the Karas Mountains, Namibia, defined by SHRIMP U-Pb dating of zircons. South Africa of Journal Geology, 110: 47-54.         [ Links ]

19. Frimmel, H. E., Frank, W., 1998. Neoproterozoic tectonothermal evolution of the Gariep Belt and its basement, Namibia/South Africa. Precambrian Research, 90: 1-28.         [ Links ]

20. Frimmel, H. E., Zartaman, R.E., Späth, A., 2001. Dating Neoproterozoic breack-up in the Richtersveld Igneous Complex, South Africa. Journal of Geology, 109: 493-508.         [ Links ]

21. Galindo, C., Casquet, C., Rapela, C., Pankhurst, R.J., Baldo, E., Saavedra, J., 2004. Sr, C and O-isotope geochemistry of carbonates from the area of Sierra de Pie de Palo, Argentina: stratigraphy and constraints on the origin of the Western Sierras Pampeanas. Precambrian Research, 131: 55-71.         [ Links ]

22. Gaucher, C., 2000. Sedimentology, palaeontology and stratigraphy of the Arroyo del Soldado Group (Vendian to Cambrian, Uruguay). Beringeria. 26: 1-120pp.         [ Links ]

23. Gaucher, C., Finney, S.C., Poiré, D.G., Valencia, V.A., Grove, M., Blanco, G., Pamoukaghlián, K., Gómez Peral, L., 2008a. Detrital zircon ages of Neoproterozoic sedimentary successions in Uruguay and Argentina: insights into the geological evolution of the Río de la Plata Craton. Precambrian Research, 167: 150-170.         [ Links ]

24. Gaucher, C., Blanco, G., Chiglino, L., Poiré, D.G., Germs, G.J.B., 2008b. Acritarchs of Las Ventanas Formation (Ediacaran, Uruguay): implications for the timing of coeval rifting and glacial events in western Gondwana. Gondwana Research, 13: 488-501.         [ Links ]

25. Gaucher, C., Boggiani, P.C., Sprechmann, P., Sial, A.N., Fairchild, T.R., 2003. Integrated correlation of the Vendian to Cambrian Arroyo del Soldado and Corumbá Groups (Uruguay and Brazil): palaeogeographic, palaeoclimatic and palaeobiologic implications. Precambrian Research, 120: 241-278.         [ Links ]

26. Gaucher, C., Sial, A., Germs, G.J.B., 2008c. Evidence of late Neoproterozoic, post-Gaskiers glacial events from sedimentary successions in southwestern Gondwana. 33 International Geological Congress, Oslo, abstract.         [ Links ]

27. Gaucher, C., Sial, A.N., Ferreira, V.P., Pimentel, M.M., Chiglino, L., Sprechmann, P. 2007. Chemostratigraphy of the Cerro Victoria Formation (Lower Cambrian, Uruguay): evidence for progressive climate stabilization across the Precambrian-Cambrian boundary. Chemical Geology, 237: 46-64.         [ Links ]

28. Gaucher, C., Frimmel, H.E., Germs, G.J.B., 2005a. Organic-walled microfossils and biostratigraphy of the upper Port Nolloth Group (Namibia): implications for latest Neoproterozoic glaciations. Geological Magazine, 142 (5): 539-559.         [ Links ]

29. Gaucher, C., Poiré, D.G., Gómez Peral, L., Chiglino, L. 2005b. Litoestratigrafía, bioestratigrafía y correlaciones de las sucesiones sedimentarias del Neoproterozoico-Cámbrico del Cratón del Rio de la Plata (Uruguay y Argentina). Latin American Journal of Sedimentology and Basin Analysis, 12 (2): 145-160.         [ Links ]

30. Gaucher, C., Poiré, D., 2009a. Palaeoclimatic events. Neoproterozoic-Cambrian evolution of the Río de la Plata. Neoproterozoic-Cambrian evolution of the Río de la Plata Palaeocontinent. In: Gaucher, C., Sial, A.N., Halverson, G.P., Frimmel, H.E. (Eds.): Neoproterozoic-Cambrian tectonics, global change and evolution: a focus on southwestern Gondwana. Developments in Precambrian Geology, 16, Elsevier: 123-130 pp.         [ Links ]

31. Gaucher, C., Poiré, D., 2009a. Palaeoclimatic events. Neoproterozoic-Cambrian evolution of the Río de la Plata. Neoproterozoic-Cambrian evolution of the Río de la Plata Palaeocontinent. In: Gaucher, C., Sial, A.N., Halverson, G.P., Frimmel, H.E. (Eds.): Neoproterozoic-Cambrian tectonics, global change and evolution: a focus on southwestern Gondwana. Developments in Precambrian Geology, 16, Elsevier: 103-114 pp.         [ Links ]

32. Gaucher, C., Frimmel, H.E., Germs, G.J.B. 2009c. Tectonic events and palaeogeographic evolution of Southwestern Gondwana in the Neoproterozoic and Cambrian. In: Gaucher, C., Sial, A.N., Halverson, G.P., Frimmel, H.E. (Eds.): Neoproterozoic-Cambrian tectonics, global change and evolution: a focus on southwestern Gondwana. Developments in Precambrian Geology, 16, Elsevier:: 295-316 pp.         [ Links ]

33. Gaucher, C., Bossi, J., Blanco, G., 2009d. Paleogeography. Neoproterozoic-Cambrian Evolution of the Rio de la Palaeocontinent:. In: Gaucher, C., Sial, A.N., Halverson, G.P., Frimmel, H.E. (Eds.): Neoproterozoic-Cambrian tectonics, global change and evolution: a focus on southwestern Gondwana. Developments in Precambrian Geology, 16, Elsevier: 131-141 pp.         [ Links ].

34. Germs, G.J.B, 1972a. The stratigraphy and paleontology of the lower Nama Group, South West Africa. Precambrian Research Unit, University of Cape Town, Bulletin, 12, 1-250pp.         [ Links ]

35. Germs, G.J.B., 1972b. New shelly fossils from the Nama Group, South West Africa. American Journal of Science, 272: 752-761.         [ Links ]

36. Germs, G.J.B., 1972c. Trace fossils from the Nama Group, South West Africa. Journal of Paleontology, 46: 864-870.         [ Links ]

37. Germs, G.J.B., 1974. The Nama Group in South West Africa and its relationship to the Pan-African geosyncline. The Journal of Geology, 82: 301-317.         [ Links ]

38. Germs, G.J.B., 1983. Implications of sedimentary facies and depositional environmental analysis of the Nama Group in South West Africa/Namibia. Geological Society of South Africa, Special Publication, 11: 89-114.         [ Links ]

39. Germs, G.J.B., 1995. The Neoproterozoic of southwestern Africa, with emphasis on platform stratigraphy and paleontology. Precambrian Research, 73: 137-151.         [ Links ]

40. Germs, G.J.B., Gresse, P.G., 1991. The foreland basin of the Damara and Gariep orogens in Namaqualand and southern Namibia: stratigrophic correlations and basin dynamics. South African Journal of Geology, 94: 159-169.         [ Links ]

41. Goscombe, B., Gray, D.R. 2007. The Coastal Terrane of the Kaoko Belt, Namibia: outboard arc-terrane and tectonic significance. Precambrian Research, 155: 139-158.         [ Links ]

42. Gray, R.D., Foster, D.A., Goscombe, B., Passchier, C., Trouw, A.J., 2006. 40 Ar/30 Ar thermochronology of the Pan- African Damara Orogen, Namibia, with implications for tectonothermal and geodynamic evolution. Precambrian Research, 150: 49-72.         [ Links ]

43. Gresse, P.G., Chemale, F., da Silva, L.C., Walraven, F., Hartmann, L.A., 1996. Late- to post-orogenic basins of the Pan-African-Brasiliano collision orogen in southern Africa and southern Brazil. Basin Research 8: 157-171.         [ Links ]

44. Gresse, P.G., Scheepers, R., 1993. Neoproterozoic to Cambrian (Namibian) rocks of South Africa: a geochronological and geotectonic review. Journal of Africa Earth Science, 16: 375-393.         [ Links ]

45. Grotzinger, J.P., Bowring, S. A., Saylor, B.Z., Kaufman, A.J., 1995. Biostratigraphic and geochronologic constraints on early animal evolution. Science, 270: 598-604.         [ Links ]

46. Hartmann, L.A. , Santos, J.O. Bossi, J., Campal, N., Schipilov, A., Mac Naughton, N. J., 2002. Zircon and titanite U- Pb SHRIMP geochronology of Neoproterozoic felsic magmatism on the eastern border of the Rio de la Plata Craton, Uruguay. Journal of South America Earth Science, 15: 229-236.         [ Links ]

47. Hartmann, L.A., Campal, N., Santos, J.O., Mac Naughton, N. J. and Schipilov, A., 2001. Archaean crust in the Río de la Plata Craton, Uruguay: SHRIMP U-Pb reconnaissance geochronology. Journal of South America Earth Science, 14: 557-570.         [ Links ]

48. Hoffman, P.F., Hawkins, D.P., Isachsen, C.E., Bowring, S.A., 1996. Precise U-Pb zircon ages for early Damaran magmatism in the Summas Mountains and Welwitschia Inlier, northern Damara Belt, Namibia. Commun. Geological Survey of Namibia, 11: 47-52.         [ Links ]

49. Horstmann, U., Ahrendt, H. Claurer, N. Porada, H., 1990. The metamorphic history of the Damara Orogen based on K/Ar data of the detrital white micas from the Nama Group, Namibia. Precambrian Research, 48: 41-61.         [ Links ]

50. Johnson, S.D., Poujol, M., Kister, A.F.M., 2006. Constraining the timing and migration of collisional tectonics in the Damara Belt, Namibia: U-Pb zircon ages for the syntectonic Salem-type Stinkbank granite. South African Journal of Geology, 109: 611-624.         [ Links ]

51. Jung, S., Hoernes, S., Mezger, K., 2000. Geochronology and petrogenesis of Pan-African, syn-tectonic, S-type and posttectonic A-type granite (Namibia): products of melting of crustalsources, fractional crystallization and wall rock entrainment. Lithos, 50: 259-287.         [ Links ]

52. Kröner, A., 1982. Rb-Sr geochronology and tectonic evolution of the Pan African belt of Namibia, southwestern Africa. American Journal of Science, 282: 1471-1507.         [ Links ]

53. Mallmann, G., Chemale, Jr.F., Avila, J.N., Kawashita, K., Armstrong, R.A., 2007. Isotope geochemistry and geochronology of the Nico Pérez Terrane, Río de la Plata Craton, Uruguay. Gondwana Research, 12: 489-508.         [ Links ]

54. McLennan, S.M., Hemming, S., McDaniel, D.K., Hanson, G.N., 1993. Geochemical approaches to sedimentation, provenance and tectonics. In: Johnsson, M.J., Basu, A., (Eds.), Processes Controlling the Composition of Clastic Sediments. Geol. Soc. Am., Special Paper, 284: 21-40.         [ Links ]

55. McLennan, S.M., Taylor, S.R., Hemming, S.R., 2006. Composition, differentiation, and evolution of continental crust: constrains from sedimentary rocks and heat flow. In: Evolution and differentiation of the continental crust, Brown, M. and Rushmer, T. (Eds.), 92-134 pp.         [ Links ]

56. Miller, R. McG., 1983. The Pan-African Damara Orogen of the South West Africa/Namibia. In: Miller, R McG. (Ed.), The evolution of the Damara Orogen of South West Africa/Namibia. Geological Society of South Africa Special Publication, 11: 431-515.         [ Links ]

57. Mulcahy, S.R., Roeske, S.M., Mcclelland, W.C., Nomade, S., Renne, P.R., 2007. Cambrian initiation of the Las Pirquitas thrust of the western Sierras Pampeanas, Argentina: Implications for the tectonic evolution of the proto-Andean margin of South America. Geology, 35: 443-446.         [ Links ]

58. Oyhantçabal, P.B., Siegesmund, S., Wemmer, K., Presnyakov, S, Layer, P. 2009. Geochronological constrains on the evolution of the southern Dom Feliciano Belt (Uruguay). Journal of the Geological Society, London, 166: 1075- 1084.         [ Links ]

59. Prave, A.R., 1996. Tale of three cratons: tectostratigraphic anatomy of the Damara Orogen in northwestern Namibia and the assembly of Gondwana. Geology, 24: 1115-1118.         [ Links ]

60. Preciozzi, F., Basei, M.A.S., Masquelin, H., 1999. Tectonic domains of the Uruguayan Precambrian Shield. II South American Symposium of Isotopic Geology. Cordoba, Argentina, Actas: 344-345.         [ Links ]

61. Ramos, V.A. 2000. The southern central Andes. In: Cordani , U., Milani, E., Thomaz Filho, A., and Campos, D. (Eds), Tectonic evolution of South America. Rio Janeiro, 31st International Geological Congress: 561-604 pp.         [ Links ]

62. Rapela, C.W., Pankhurst, R.J., Casquet, C., Fanning, C.M., Baldo, E.G., González-Casado, J.M., Galindo, C., Dahlquist, J. 2007. The Río de la Plata Craton and the assembly of SW Gondwana. Earth Science Reviews, 83: 49-82.         [ Links ]

63. Reid, D.L., Ransome, I.G.D., Onstott, T.C., Adams, C.J., 1991. Time of emplacement and metamorphism of Late Precambrian mafic dykes associated with the Pan-African Gariep orogeny, Southern Africa: implications for the age of the Nama Group. Journal of African Earth Science, 13: 531-541.         [ Links ]

64. Rivalenti, G., M. Mazzucchelli, M. Molesini, R. Petrini, V.A.V.Girardi, J. Bossi, N. Campal, 1995. Petrology of Late Proterozoic mafic dikes in the Nico Pérez region, central Uruguay. Mineralogy and Petrolology, 55: 239-263.         [ Links ]

65. Saalmann, K., Hartmann, L.A., Remus M. V. D., 2005a. Geochemistry and crustal evolution of volcanosedimentary successions and orthogneisses in the Sao Gabriel Block, southernmost Brazil - relics of Neoproterozoic magmatic arcs. Gondwana Research, 8: 143-61.         [ Links ]

66. Saalmann, K., Hartmann, L.A., Remus, M. V. D., Koester, E. and Coincencão¸, R. V., 2005b. Sm-Nd isotope geochemistry of metamorphic volcanosedimentary successions in the São Gabriel Block, southernmost Brazil: evidence for the existence of juvenile Neoproterozoic oceanic crust to the east of the Río de la Plata craton. Precambrian Research, 136: 159-75.         [ Links ]

67. Saalmann, K., Remus M. V. D., Hartmann, L.A., 2006. Structural evolution and tectonic setting of the Porongos belt, southern Brazil. Geological Magazine, 143 (1), 59-88.         [ Links ]

68. Sánchez Bettucci, L., Cosarinsky, M., Ramos, V., 2001. Tectonic setting of the Late Proterozoic Lavalleja Group (Dom Feliciano Belt), Uruguay. Gondwana Research 4(3): 395-407.         [ Links ]

69. Sánchez Bettucci; L., Oyhantçabal, P., Page, S., Ramos V.A., 2003a. Petrography and Geochemistry of the Carapé Complex, Southeastern Uruguay. Gondwana Research 6(1): 89-105.         [ Links ]

70. Saylor, B.Z., Grotzinger, J.P., Germs, G.J.B., 1995. Sequence stratigraphy and sedimentology of the Neoproterozoic Kuibis and SSG (Nama Group, southwestern Namibia. Precambrian Research, 73: 153-171.         [ Links ]

71. Seth, B., Kröner, A., Mezger, K., Nemchin, A.A., Pidgeon, R.T., Okrusch, M., 1998. Archaean to Neoproterozoic magmatic events in the Kaoko belt of NW Namibia and their geodynamic significance. Precambrian Research, 92: 341-363.         [ Links ]

72. Schmitt, R.D.S., Trouw, R.A.J., Van Schmus, W.R., Pimentel, M.M., 2004. Late amalgamation in the central part of West Gondwana: new geochronological data and the characterization of a Cambrian collisional orogeny in the Ribeira Belt (SE Brazil). Precambrian Research, 133: 29-61.         [ Links ]

73. Silva, L.C., Hartmann, L.A., McNaughton, N.J., Fletcher, I.R., 1999. SHRIMP U/Pb zircon dating of Neoproterozoic granitic magmatism and collision in the Pelotas Batholith, southernmost Brazil. International Geological Review 41: 531-551.         [ Links ]

74. Trompette, R., 1997. Neoproterozoic (600 Ma) aggregation of western Gondwana: a tentative scenario. Precambrian Research: 101-112.         [ Links ]

75. Unrug, R., 1996. The assembly of Gondwanaland. Scientific results of IGCP Project 288: Gondwanaland sutures and mobile belts. Episodes, 19: 11-20.         [ Links ]

Recibido: 4 de diciembre de 2009
Aceptado: 10 de junio de 2010

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons