SciELO - Scientific Electronic Library Online

 
vol.46 número1Relevamiento y asignación taxonómica de himenópteros potencialmente polinizadores en un cultivo de soja índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

  • Não possue artigos citadosCitado por SciELO

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


RIA. Revista de investigaciones agropecuarias

versão On-line ISSN 1669-2314

RIA. Rev. investig. agropecu. vol.46 no.1 Ciudad Autónoma de Buenos Aires  2020

 

Revisión

Shallot virus X: a hardly known pathogen of the genus Allium

Roberto GRANDA JARAMILLO1 

F. FLORES2 

1Universidad UTE, Facultad de Ciencias de la Ingeniería e Industrias, Quito, Ecuador.

2Centro de Investigación de Alimentos, CIAL, Facultad de Ciencias de la Ingeniería e Industrias, Universidad UTE, 171029 Quito, Ecuador; Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas ESPE, 170501 Sangolquí, Ecuador.

Abstract

Crops belonging to the genus Allium, family Amaryllidaceae, are economically important and are widely cultivated around the globe. Some of the most problematic diseases of these crops are caused by members of three virus genera, Potyvirus, Carlavirus and Allexivirus. Shallot virus X (ShVX) is an Allexivirus that was first discovered in Russia in the nineties and it has since been described worldwide. The virus, transmitted mechanically or by the dry bulb mite (Aceria tulipae), affects virtually all members of the genus Allium and it causes yield reductions on these crops. ShVX is a positive-sense single-stranded monopartite RNA virus that contains six open reading frames (ORFs). The virus is mainly detected by RT-PCR but there are other serological and molecular techniques available for diagnosis. There are no methods described for managing crops infected by ShVX in the field, but tissue culture of meristems can render virus-free plants. Research on the ShVX-Allium pathosystem is needed for a comprehensive understanding of the physiological and molecular mechanisms used by the virus to infect its hosts and for developing methods for the effective control of viral infections.

Keywords Allexivirus; ShVX; RT-PCR; onion; garlic

Resumen

Los cultivos del género Allium, familia Amaryllidaceae, son económicamente importantes y ampliamente sembrados alrededor del mundo. Algunas de las enfermedades más problemáticas de estos cultivos son ocasionadas por virus de tres géneros, Potyvirus, Carlavirus y Allexivirus. Shallot virus X (ShVX) es un Allexivirus que fue descrito por primera vez en Rusia en la década de los noventa y desde entonces se ha descrito su presencia a nivel mundial. El virus, transmitido mecánicamente o por el eriófido de los bulbos (Aceria tulipae), afecta prácticamente a todos los miembros del género Allium ocasionando la disminución en la producción de estos cultivos. ShVX tiene un genoma monopartito representado por una cadena simple de ARN de polaridad positiva con seis marcos abiertos de lectura (ORFs). El virus se detecta principalmente por RT-PCR, pero existen otros métodos serológicos y moleculares disponibles para su diagnóstico. No existen métodos descritos para el manejo de plantas infectadas con ShVX en el campo, sin embargo se ha determinado que el cultivo de tejidos meristemáticos puede producir plantas libres de virus. Es necesario desarrollar investigaciones en el patosistema ShVX-Allium para lograr un entendimiento general sobre los mecanismos fisiológicos y moleculares que utiliza el virus para infectar a su hospedero y para desarrollar métodos para el control efectivo de las infecciones virales.

Palabras clave Allexivirus; ShVX; RT-PCR; cebolla; ajo

INTRODUCTION

The genus Allium, family Amaryllidaceae, includes several plant species that are native to the northern hemisphere and are distributed through Europe, Asia, North America, and the north of Africa (Li et al., 2010; Phillips, 2010). Most Amaryllidaceae species grow in temperate zones, some can grow in the tropics and a few, like A. schoenoprasum, may grow in the arctic (Pastor and Valdes, 1983). Plants within this family are characterized by the uniformity of their floral structures despite the variability present in the morphology of other plant parts. Among the 2800 species belonging to the family Amaryllidaceae, only species within the Allium and Asparagus genera have agronomical importance (García et al., 2011). Onion (A. cepa), garlic (A. sativum), shallot (A. cepa var. ascalonicum) and leek (A. ampeloprasum var. porrum) are the most widely consumed Allium species worldwide (Rabinowitch, 2017). They have several medicinal uses, including treatment for diabetes, fever, jaundice, spleen enlargement, etc. (Sujitha et al., 2016). In South America these crops are planted in tempered valleys and Andean territories with moderately cold climates, close to distribution centers (Ministerio de Agricultura, Ganadería y Pesca-MAGAP, 2013). In the Andean region, Allium crops are socio-economically important due to the direct or indirect workforce associated with their production.

Allium vegetables are the fourth most abundant group of commercially produced non-leguminous vegetables (FAO, 2016). The worldwide demand for bulb onion has been growing constantly showing a 70 % increase from 2000, when 50 million ton were produced, to 2014, when production reached 85 million ton (Boon, 2015). The leading exporters include The Netherlands, China, Mexico, India, USA, Egypt, Spain, New Zealand and Argentina. The main importers are USA, United Kingdom, Malaysia, Germany, Saudi Arabia, Japan, Canada, Czech Republic, Republic of Korea, and Brazil (Galmarini, 2018). United Kingdom and Germany are the main onion export market for Argentina and Chile, the largest exporters in South America, although their product also reaches United States, Canada, Japan and Malaysia. In countries like Peru and Chile, sweet onions are produced to export to the United States market from January to May. Onion and garlic production is economically important in other Latin American countries such as Mexico and Ecuador, where shallot production is also significant.

As a result of the great scale production and the vegetative nature of Allium propagation, pathogens that affect these crops abound. Shallot virus X (ShVX), from the Flexiviridae family and genus Allexivirus, is one of the several viruses infecting Allium (Howitt et al., 2006; Zavriev and Vishnichenko, 2005). When infecting garlic, Allexivirus causes yield losses as the bulb size of infected plants is smaller compared to healthy plants (Cafrune et al., 2006).

DISTRIBUTION AND SYMPTOMS

Shallot virus X was firts reported in Russia (Vishnichenko et al., 1993; Kanyuka et al., 1992; Zavriev and Vishnichenko, 2005). The sequence contains six open reading frames (ORFs). The virus has also been reported in the Netherlands (van Dijk and van der Vlugt, 1994), India (Majumder et al., 2008), New Zealand (Perez-Egusquiza et al., 2009), Sudan (Hamed et al., 2012), Italy (Taglienti et al., 2015) and Poland (Bereda and Paduch-Cichal, 2016). Recently, the virus was discovered in South America (Granda et al., 2017), and it is presumed that it is distributed worldwide.

Plants infected by ShVX may be asymptomatic or display mild mosaic and chlorotic symptoms. In Argentina, a study showed a 14 to 32 % decrease in bulb weight and a 6 to 32 % decrease in bulb diameter, related to Allexivirus infection in garlic (Cafrune et al., 2006), resulting in significant yield losses. Nevertheless, it has been observed that, in natural conditions, viruses from the Allexivirus, Carlavirus, and Potyvirus genera can form viral complexes, making it difficult to relate symptomatology with a specific virus (Katiset al., 2012). These viral complexes are common among plants from the Amaryllidaceae family (Mituti et al., 2015; Song et al., 1998).

TRANSMISSION

The only known vector of ShVX is the dry bulb mite (Aceria tulipae) (Van Dijk et al., 1991; Sang Gu et al., 2007), a pathogen that can persist in plant material destined for propagation (Van Dijk et al., 1991; Adams et al., 2004). It has been observed that the pathogen employs unconventional routes to overcome the plant viral defenses, which may be related with a increase in the fitness of the virus (Arkhipov et al., 2017).

Mechanical sap inoculation has been proved effective for transmitting all members of the Allexivirus genus (Adams et al., 2004). In the other hand, virus transmission vectored by aphids has not been reported for any Allexivirus (Zavriev and Vishnichenko, 2005).

MORPHOLOGY AND GENOME

The first structural analysis of ShVX revealed similarities with the genomic organization of Carlavirus but lack ORF6 (Chen et al., 2004; Kanyuka et al., 1992). Later, as the number of available viral genomes increased, it was determined that ShVX together with other viruses detected in the genus Allium (Garlic virus A, -B, -C, -D) belongs to the genus Allexivirus (Song et al., 1998; Sumi et al, 1999). Furthermore, comparative genome and protein analyses, indicate that the Allexivirus are part of the Flexiviridae family (Adams et al., 2004; Zavriev and Vishnichenko, 2005). The Flexiviridae includes viruses with filamentous virions, polyadenylated genome, and a triple gene block of movement proteins which are known to infect plants and plant-pathogenic fungi (Martelli et al., 2007).

Shallot virus X has a monopartite genome represented by a single strand positive RNA with six ORFs and a polyadenilated 3´-end (Kanyuka et al., 1992). The virions of ShVX are highly-flexible, filamentous particles of aproximately 800 nm of length and 12 nm of width, harbouring a 8890 nucleotide genome (Kanyuka et al., 1992; Vishnichenko et al., 1993). The virion length is similar to that of a potyvirus but its flexibility resembles that of a closterovirus (King et al., 2012).

ORF1, located in the 5´ -end of the ShVX genome, codes for a viral replicase of approximately 195 kDa. The proteins coded by ORF2 and ORF3, of 26 and 11 kDA, respectively (Kanyuka et al., 1992), are similar to the triple gene block proteins, TGB1 and TGB2 that are found in diverse plant viruses (Morozov and Solovyev, 2003). ORF4 codes for P42, a serine rich 42 kDa-protein of unknown function and with no orthologous genes found in other Allexivirus nor in closely related genera, such as Potexvirus or Carlavirus. It is likely that P42 function is related to viral movement (Arkhipov et al., 2013). ORF5 codes for the coat protein of 28 kDa, and ORF6 for a small, 15 kDa, cysteine-rich protein which is related to a small protein located close to the 3´end of Carlavirus. Lukhovitskaya et al., 2014) demonstrated that this small protein acts as a viral transcription factor that supresses gene silencing.

Several filamentous and rod-shaped virus genomes contain a triple gene block that codes for three proteins that are essential for viral movement through plasmodesmata and systemic transport (Verchot-Lubicz et al., 2010). Species from the genus Allexivirus contain part of the TGB3 within their genome but it is not expressed by an individual ORF, as it lacks a start codon (Kanyuka et al., 1992; Chen et al., 2001). Nevertheless, the TGB3 protein of ShVX and other Allexivirus may be expressed along with TGB2 from a bicistronic mRNA, requiring a leaky ribosome scanning (Lezzhov et al., 2015).

DIAGNOSIS OF ShVX

ELISA (Enzyme-Linked Immuno Sorbent Assay) and PCR (Polymerase Chain Reaction) are the most common methods for plant pathogenic virus detection worldwide (Boonham et al., 2014). Aditionally, the use of electron microscopy for morphological characterization and of indicator plants to determine alternative hosts and symptoms associated to viral infections, are common use in viral diagnosis. According to Boonham et al. (2014), the choice of diagnosis technique should depend on sensitivity, especificity, repeatibility and reproductibility.

Shallot virus X was first detected with indirect ELISA using horeradish peroxidase (Vishnichenko et al., 1993). Currently, the use of double antibody sandwich ELISA, using ShVX-specific antiserum (DSMZ AS-1042) is common. Nevertheless, low viral titers present in plant samples impede a reproducible detection of the pathogen through ELISA (Ling et al., 2001).

Traditional diagnostics methods based on serology, host range, and symptoms are limited in their ability to differentiate among Allium viruses, owing to the presence of complex viral mixtures exhibiting similar symptoms and possessing restricted host ranges. Reverse transcription coupled with the polymerase chain reaction (RT-PCR) is often used for the diagnosis of RNA viruses (Navot et al., 1992). This is a fast, highly-sensitive method that, when multiplexed, allows the simultaneous identification of several different viruses (Crosslin and Hamlin, 2011). Methods for RT-PCR diagnosis of individual viruses affecting Allium species have been developed and optimized (Bereda and Paduch-Cichal, 2017; Dovas et al., 2001; Perez-Egusquiza et al., 2009; Vishnichenko et al., 1993; Zavriev and Vishnichenko, 2005). However, it is necessary to effectively diagnose various types of Allium viruses at the same time. Multiplex detection assays have been developed for the detection of Onion yellow dwarf virus (OYDV) and Shallot latent virus (SLV)(Majumderet al., 2008), OYDV, SLV, Garlic common latent virus (GarCLV) and allexiviruses in Indian garlic accessions (Majumder and Baranwal, 2014), and for detection of several garlic viruses (Hu et al., 2015).

Recently, next-generation sequencing (NGS) of total RNA from infected plants have been widely adopted to identify all the different viruses that might be present in a sample (Pallás et al., 2018). However, there are no reports about the use of NGS for detection of ShVX.

MANAGEMENT

Vegetatively propagated crops can be infected by different virus species that tend to accumulate over generations resulting in yield losses and varietal degeneration (Pagán et al., 2014; Pramesh and Baranwal, 2015). Therefore, a periodical renovation, using virus-free plant material, is needed.

There is no literature available regarding methods to manage ShVX in the field; however, Perotto et al. (2010) and Shiboleth et al.(2001) reported that Allexivirus-free plants can be vegetatively reproduced using meristems. Garlic virus-free plants produced significantly higher yields compared to infected plants. The stem-disc dome culture method and its combination with thermotherapy could also eliminate Allexivirus in garlic plants (Ayabe and Sumi 2001; Ghaemizadeh et al., 2013).

Figure 1Genomic organization of Shallot virus X. TGB1, TGB2, and TGB3: triple gene block movement proteins; P42:protein of unknown function; CP: coat protein; Cys: cysteine-rich protein. 

CONCLUSION

Shallot virus X is a hardly known plant pathogenic virus that infects and causes yield reduction in Allium species. Since symptoms are unconspicuous and they are usually present in complex with other viruses, it is difficult to eliminate them. However, various procedures for controlling ShVX can be implemented depending upon situation. Development of resistant varieties, application of agronomic and biotechnological methods, and adequate plant nutrition and pest control, can be used in an integrated manner to manage this virus which is still a challenge for Allium producers.

REFERENCES

ADAMS, M.J.; ANTONIW, J.C.; BAR-JOSEPH, M.; BRUNT, A.A.; CANDRESSE, T.; FOSTER, G.D.; MARTELLI, G.P.; MILNE, R.G. 2004. Virology division news: the new plant virus family Flexiviridae and assessment of molecular criteria for species demarcation. Archives of Virology 149(5): 1045-60. (Available at: http://link.springer.com/10.1007/s00705-004-0304-0). [ Links ]

ARKHIPOV, A.V.; GUSHCHIN, V.A.; VISHNICHENKO, V.K.; SOLOVYEV, A.G. 2013. Accumulation of changes in the genome of Shallot virus X persisting in vegetatively reproduced plants. Doklady Biochemistry And Biophysics 452(1): 237-40. (Available at: http://link.springer.com/10.1134/s1607672913050049). [ Links ]

ARKHIPOV, A.V.; SOLOVYEV, A.G.; VISHNICHENKO, V.K. 2017. Persistent Shallot virus X infection correlates with transcriptional repression of plant cell rna-dependent rna polymerase and dcl proteins in plant roots. Molecular Biology 51(1): 108-11. (Available at: http://link.springer.com/10.1134/s0026893317010034). [ Links ]

AYABE, S.; SUMI, S. 2001. A novel and efficient tissue culture method – ‘ stem-disc dome culture ’ – for producing virus-free garlic (Allium sativum l.). Plant Cell Reports: 503-7. [ Links ]

BEREDA, M.; PADUCH-CICHAL, E. 2017. Viruses infecting ornamental allium species in Poland. Journal of Plant Pathology 99(2): 509-12. [ Links ]

BEREDA, M.; PADUCH-CICHAL, E. 2016. First report of Shallot virus X in Allium caeruleum in Poland. Plant Disease 100(9): 1958. doi./10.1094/pdis-03-16-0302-pdn [ Links ]

BOON, J.K. 2015. Fact sheet onions. Fruit & Vegetables Facts: 1-22. [ Links ]

BOONHAM, N.; KREUZE, J.; WINTER, S.; VAN DER VLUGT, R.; BERGERVOET, J.; TOMLINSON, R. AND MUMFORD, R. 2014. Methods in virus diagnostics: from ELISAto next generation sequencing. Virus Research 186: 20-31. doi./10.1016/j.virusres.2013.12.007 [ Links ]

CAFRUNE, E.; PEROTTO, M.; CONCI, V. 2006. Effect of two Allexivirus isolates on garlic yield. Plant Disease 90(7): 898-904. doi./10.1094/pd-90-0898 [ Links ]

CAFRUNE, E.; BALZARINI, M.; CONCI, V. 2006. Changes in the concentration of an allexivirus during the crop cycle of two garlic cultivars. Plant Disease 90(10): 1293-96. (Available at: http://www.scopus.com/inward/record.url?eid=2-s2.0-33748925214&partnerid=tzotx3y1). [ Links ]

CHEN, J.; ZHENG, H.; ANTONIW, J.; ADAMS, M.; CHEN, J.; LIN, L. 2004. Detection and classification of allexiviruses from garlic in China. Archives of Virology 149(3): 435-45. [ Links ]

CHEN, J.; CHEN, J.; ADAMS, M. 2001. Molecular characterisation of a complex mixture of viruses in garlic with mosaic symptoms in China. Archives of Virology 146(10): 1841-53. [ Links ]

CROSSLIN, J.M.; LAUNA, L.H. 2011. Standardized RT-PCR conditions for detection and identification of eleven viruses of potato and potato spindle tuber viroid. American Journal of Potato Research 88(4): 333-38. [ Links ]

VAN DIJK, P.; VERBEEK, M.; BOS, I. 1991. Mite-borne virus isolates from cultivated allium species, and their classification into two new rymoviruses in the family Potyviridae. Netherlands Journal of Plant Pathology 97(6): 381-99. [ Links ]

VAN DIJK, P.; VAN DER VLUGT, R.1994. New Mite-Borne Virus Isolates From Rakkyo, Shallot And Wild Leek Species. European Journal of Plant Pathology 100(3-4): 269-77. [ Links ]

DOVAS, C.I.; HATZILOUKAS, E.; SALOMON, R.; BARG, E.; SHIBOLETH, E.; KATIS, N.I. 2001. Comparison of methods for virus detection in Allium spp. Journal of Phytopathology 149(11-12): 731-37. [ Links ]

FAO. 2016. Food and agriculture data. (Available at: http://www.fao.org/faostat/en/#data/qc). [ Links ]

GALMARINI, C.R. 2018. Economic and academic importance. In: SHIGYO, M.; KHAR, A.; ABDELRAHMAN, M. The Allium Genomes, (Eds.).. Springer International Publishing, 217. doi./10.1007/978-3-319-95825-5_1 [ Links ]

GARCÍA, M.; DE CARA, M.; GÁLVEZ, L.; IGLESIAS, C.; VARES, M. 2011. Especificidad parasitaria de fusarium proliferatum (matsushima) nirenberg sobre especies del género Allium. Boletín de Sanidad Vegetal y Plagas, Madrid: Ministerio de Agricultura, Alimentación y Medio Ambiente, 195-206. [ Links ]

GHAEMIZADEH, F.; DASHTI, F.; KHODAKARAMIAN, G.; SARIKHANI, H. 2013. Archives of phytopathology and plant protection combination of stem-disc dome culture and thermotherapy to eliminate allexiviruses and onion yellow dwarf virus from garlic (Allium sativum cv. hamedan). (October 2014): 37-41. [ Links ]

GRANDA, R.; LANDÁZURI, G.; ARKHIPOV, A.V. 2017. First report of Shallot virus Xin garlic in Ecuador. Plant Disease 101(6): 1066. doi./10.1094/pdis-11-16-1558-pdn [ Links ]

HAMED, K.; MENZEL, W.; MOHAMED, M.; DAFALLAH, G.; GADELSEED, A.; AND WINTER, S. 2012. First report of Shallot virus X in onion in Sudan. Plant Disease 96(7): 1075. doi/10.1094/pdis-03-12-0253-pdn [ Links ]

HOWITT, R.; BEEVER, R.; PEARSON, M.; FORSTER, R. 2006. Genome characterization of a Flexuous rod-shaped mycovirus, Botrytis virus X, reveals high amino acid identity to genes from plant ‘potex-like’ viruses. Archives of Virology 151(3): 563-79. [ Links ]

HU, X.; LEI, Y.; WANG, P.; TANG, L.; HE, C.; SONG, Y.; XIONG, X.; NIE, X. 2015. Development of a multiplex reverse transcription-pcr assay for simultaneous detection of garlic viruses. Journal of Integrative Agriculture 14(5): 900-908. doi/10.1016/s2095-3119(14)60892-3 [ Links ]

KANYUKA, K.V.; VISHNICHENKO, V.K.; LEVAY, K.E.; KONDRIKOV, D.YU.; RYABOV, E.V.; ZAVRIEV, S.K. 1992. Nucleotide sequence of Shallot virus XRNA reveals a 5’-proximal cistron closely related to those of potexviruses and a unique arrangement of the 3’-proximal cistrons. Journal of General Virology 73(10): 2553-60. [ Links ]

KATIS, N.I.; MALIOGKA, V.I.; DOVAS, C.I. 2012. Advances in virus research viruses of the genus Alliumin the mediterranean region. 1st Ed. Elsevier Inc. doi/10.1016/b978-0-12-394314-9.00005-1 [ Links ]

KING, A.; LEFKOWITZ, L.; ADAMS, M. AND CARSTENS, C. 2012. Virus Taxonomy. International Union of Microbiological Societies Virology Division. Elsevier. [ Links ]

LEZZHOV, A.A.; GUSCHIN, V.A.; LAZAREVA, E.A.; VISHNICHENKO, V.K.; MOROZOV, S.Y.; SOLOVYEV, A.G. 2015. Translation of the Shallot virus X tgb3 gene depends on non-aug initiation and leaky scanning. Journal of General Virology 96(10): 3159-64. [ Links ]

LI, Q.; ZHOU, S.; HE, X.; YU, Y.; ZHANG, Y.; WEI, X. 2010. Phylogeny and biogeography of Allium(amaryllidaceae: allieae) based on nuclear ribosomal internal transcribed spacer and chloroplast rps16 sequences, focusing on the inclusion of species endemic to China. Annals of Botany 106(5): 709-33. [ Links ]

LING, K; ZHU, H.; PETROVIC, N.; GONSALVES, D. 2001. Comparative effectiveness of elisa and RT-PCR for detecting grapevine leafroll-associated closterovirus-3 in field samples. American Journal of Enology and Viticulture 52(1): 21 LP-27. (Available at: http://www.ajevonline.org/content/52/1/21.abstract). [ Links ]

LUKHOVITSKAYA, N.I.; VETUKURIA, R.R.; SAMAA, I.; THADURIA, S.; SOLOVYEV, A.G.; SAVENKOV, E.I. 2014. A viral transcription factor exhibits antiviral RNA silencing suppression activity independent of its nuclear localization. Journal of General Virology 95: 2831-37. [ Links ]

LUKHOVITSKAYA, N.I.; SOLOVIEVA, A.D.; BODDETI, S.K.; THADURI, S.; SOLOVYEV, A.G.; SAVENKOVA, E.I. 2013. An RNA virus-encoded zinc-finger protein acts as a plant transcription factor and induces a regulator of cell size and proliferation in two tobacco species.The Plant Cell 25(3): 960-73. (Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3634699&tool=pmcentrez&rendertype=abstract). [ Links ]

MAJUMDER, S.; ARYA, M.; PANT, S.; BARANWAL, V.K. 2008. Shallot virus Xin indian shallot, a new virus report for India. Plant Pathology 57(2): 396. http://dx.doi.org/10.1111/j.1365-3059.2007.01748.x. [ Links ]

MAJUMDER, S.; BARANWAL, V.K. 2014. Simultaneous detection of four garlic viruses by multiplex reverse transcription pcr and their distribution in indian garlic accessions. Journal of Virological Methods 202: 34-38. doi/10.1016/j.jviromet.2014.02.019 [ Links ]

MAJUMDER, S.; BARANWAL, V.K.; JOSHI, S. 2008. Simultaneous detection of Onion yellow dwarf virus and Garlic latent virus in infected leaves and cloves of garlic by duplex rt-pcr. Short Communication. (January 2014). [ Links ]

MARTELLI, G.P.; ADAMS, M.J.; KREUZE, J.F.; DOLJA, V.V. 2007. Family Flexiviridae : a case study in virion and genome plasticity. Annual Review of Phytopathology 45(1): 73-100. (Available at: http://www.annualreviews.org/doi/10.1146/annurev.phyto.45.062806.094401). [ Links ]

MINISTERIO DE AGRICULTURA, GANADERÍA Y PESCA. 2013. Boletín situacional. Cebolla colorada. Quito: Ministerio de Agricultura, Ganadería y Pesca (MAGAP). [ Links ]

MITUTI, T.; MOURA, M.F.; MARUBAYASHI, J.; OLIVEIRA, M.; IMAIZUMI, V.; SAKATE, R.; PAVAN, M. 2015. Survey of viruses belonging to different genera and species in noble garlic in Brazil. Scientia Agricola 72(3): 278-81. (Available at: http://www.scielo.br/scielo.php?script=sci_arttext&pid=s0103-90162015000300278&lang=pt%0ahttp://www.scielo.br/pdf/sa/v72n3/0103-9016-sa-72-3-0278.pdf). [ Links ]

MOROZOV, S.Y.; SOLOVYEV, A.G. 2003. Triple gene block: modular design of a multifunctional machine for plant virus movement. Journal of General Virology 84(6): 1351-66. [ Links ]

NAVOT, N.; ZEIDAN, M.; PICHERSKY, E.; ZAMIR, D.; CZOSNEK, H. 1992. Use of the polymerase chain reaction to amplify Tomato yellow leaf curl virus DNA from infected plants and viruliferous whiteflies. Phytopathology 82(10): 1199-1202. [ Links ]

PAGÁN, I.; MONTES, N.; MILGROOM, M.G.; GARCÍA-ARENAL, F. 2014. Vertical transmission selects for reduced virulence in a plant virus and for increased resistance in the host. Plos Pathogens 10(7): 23-25. [ Links ]

PALLÁS, V.; SÁNCHEZ-NAVARRO, J.; JAMES, D. 2018. Recent advances on the multiplex molecular detection of plant viruses and viroids. Frontiers in Microbiology. 9 (September): 1-11. (Available at: https://www.frontiersin.org/articles/10.3389/fmicb.2018.02087/full). [ Links ]

PASTOR, J.; VALDES, P. 1983. Revisión del género Allium (Liliaceae) en la península ibérica e Islas Baleares. Sevilla: Secretariado de Publicaciones de la Universidad de Sevilla. [ Links ]

PEREZ-EGUSQUIZA, Z.; WARD, L.I.; CLOVER, G.; FLETCHER, J.D.; VAN DER VLUGT, R.A. 2009. First report of Shallot virus Xin shallot in New Zealand. Plant Pathology 58(2): 407. doi /10.1111/j.1365-3059.2009.02031.x [ Links ]

PEROTTO, M.; CAFRUNE, E.; CONCI, V. 2010. The effect of additional viral infections on garlic plants initially infected with allexiviruses. European Journal of Plant Pathology 126(4): 489-95. [ Links ]

PHILLIPS, N. 2010. Seed and bulb dormancy characteristics in new world Allium l. (Amaryllidaceae): A Review. International Journal of Botany 6(3): 228-34. [ Links ]

PRAMESH, D.; BARANWAL, V.K. 2015. Production of virus-free garlic (Allium sativum l.) through meristem tip culture after solar or hot air treatment of cloves. The Journal of Horticultural Science and Biotechnology 90(2): 180-86. doi/10.1080/14620316.2015.11513170 [ Links ]

RABINOWITCH, H. 2017. Onions and allied crops: Volume i: Botany, Physiology, and Genetics. CRC Press. [ Links ]

SANG GU, K.; KOO, B.; LEE, E.E.; CHANG, M. 2007. Allexivirus transmited by eriophyoid mites in garlic plants. Journal of Microbiology and Biotechnology 17: 1833-40. (Available at: http://agris.fao.org/agris-search/search.do?recordid=kr2008000512). [ Links ]

SHIBOLETH, M.; GAL-ON, A.; KOCH, M.; RABINOWITCH, H.; SALOMON, R. 2001. Molecular characterisation of Onion yellow dwarf virus (OYDV) infecting garlic (Allium sativum l.) in Israel : thermotherapy inhibits virus elimination by meristem tip culture. Annals of Applied Biology: 187-95. [ Links ]

SONG, S.L.; SONG, J.T.; KIM, C.H.; LEE, J.S.; CHOISANG, Y.D. 1998. Molecular characterization of the Garlic virus X genome. Journal of General Virology 79(1): 155-59. [ Links ]

SUJITHA, A.; BHASKARA, R.B.; SIVAPRASAD, Y.; USHA, R. 2016. Serological, molecular characterization and diagnostic methods of Groundnut bud necrosis virus infecting onion (Allium cepa l.) in south india. Asian Journal of Plant Pathology 10: 29-35. Archives of Virology 144: 1819-1826 [ Links ]

SUMI, S.; MATSUMI, T.; TSUNEYOSHI, T. 1999. Complete nucleotide sequences of garlic viruses A and C,members of the newly ratified genus Allexivirus. Archives of Virology, 144(9), 1819-1826. [ Links ]

TAGLIENTI, A.; TAVIANI, P.; PAOLETTI, S.; TOMASSOLI, L. 2015. First report of Shallot virus X infecting shallot in Italy. New Disease Reports 32(28): 5197. [ Links ]

VERCHOT-LUBICZ, J.; TORRANCE, L.; SOLOVYEV, A.G.; MOROZOV, S.YU.; JACKSON, A.O.; GILMER, D. 2010. Varied movement strategies employed by triple gene block–encoding viruses. Molecular Plant-Microbe Interactions 23(10): 1231-47. doi/10.1094/mpmi-04-10-0086 [ Links ]

VISHNICHENKO, V.K.; KONAREVA, T.N.; ZAVRIEV, S.K. 1993. A new filamentous virus in shallot. Plant Pathology 42(1): 121-26. [ Links ]

ZAVRIEV, S.; VISHNICHENKO, V.K. 2005. Genus Allexivirus. In:, FAUQUET, M.; MAYO, J.; MANILOFF, Y.U.; BALL, L.; DESSELBERGER, I. (Ed.). Virus Taxonomy: Eigth Report on The International Committe on the Taxonomy of Viruses San Diego: Elsevier Ltd, 1098-1100. [ Links ]