SciELO - Scientific Electronic Library Online

 
vol.24 número3SOBRE LA MATERIALIDAD DE LOS ENCUENTROS ENTRE LOS TUPI-GUARANÍ Y LOS NO TUPIAnálisis del conjunto faunístico del sitio arqueológico Pomona (Provincia de Río Negro, Argentina) índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

  • Não possue artigos citadosCitado por SciELO

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Comechingonia

versão On-line ISSN 1851-0027

Comechingonia vol.24 no.3 Córdoba dez. 2020

 

Artículos

FIRST RECORD OF TUBERCULOSIS LESIONS IN ZOOARCHAEOLOGICAL SAMPLES OF OTARIID PINNIPEDS. NEW ASPECTS OF THE PRE-EUROPEAN ORIGIN OF HUMAN TUBERCULOSIS IN SOUTH AMERICA AND DISSEMINATION MECHANISMS OF Mycobacterium pinnipediiIN THE SOUTHERN HEMISPHERE

PRIMER REGISTRO DE LESIONES TUBERCULOSAS EN MUESTRAS ZOOARQUEOLÓGICAS DE PINNÍPEDOS OTÁRIDOS. NUEVOS ASPECTOS DEL ORIGEN PRE-EUROPEO DE LA TUBERCULOSIS HUMANA EN AMÉRICA DEL SUR Y MECANISMOS DE DISEMINACIÓN DEL Mycobacterium pinnipediiEN EL HEMISFERIO SUR

Ricardo Bastida1 

Viviana Quse1 

María Paz Martinoli1 

Atilio Francisco Zangrando1 

1Instituto de Investigaciones Marinas y Costeras, CONICET-UNMDP, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata.Funes 3350 (7600) Mar del Plata, Argentina. Email:bastidaricardo@gmail.com 2Unión Internacional para la Conservación de la Naturaleza (IUCN).RueMauverney 28, 1196 Gland, Suiza. Email: vivianaquse@gmail.com 3 Laboratorio de Antropología, CADIC - CONICET. Bernardo Houssay 200 (9410) Ushuaia, Tierra del Fuego, Argentina. Email: mpmartinoli@yahoo.com.ar 4Laboratorio de Antropología, CADIC - CONICET .Facultad de Filosofía y Letras, Universidad de Buenos Aires.Puan 480 (1420), CABA, Argentina. Email: panchozan@yahoo.com.ar

ABSTRACT

In 2003 Mycobacterium pinnipedii was described as responsible for producing tuberculosis (TB) in living otariid pinnipeds from Argentina and Australia. It is the only member of marine origin within the Mycobacterium tuberculosis Complex (MTBC), which also affects other domestic and wild mammals, and humans. Based on several pre-Columbian records of human tuberculosis in South America, in 2010-2011 a new hypothesis about the origin of this zoonosis through otariid pinnipeds arose. In 2014, this hypothesis was confirmed based on the study of ancient DNA from three mummies (700-1,000 years BP) of the Chiribaya culture (Peru). Since there were no records of TB bone lesions in zooarchaeological samples of otariid pinnipeds from South America and the rest of the world, our study aimed at examining zooarchaeological samples of pinnipeds from coastal sites of the Beagle Channel (Tierra del Fuego, Argentina), being the oldest Túnel I (6,400-4,300 years BP). A total of 4,138 vertebrae were analyzed, of which 0.46% showed lesions compatible with TB. In addition, we propose a new hypothesis on possible mechanisms of Mycobacterium pinnipedii dissemination that would explain the transmission routes to the different otariid pinniped species of the Southern Hemisphere. Mycobacterium pinnipedii is one of the most aggressive mycobacteria of the MTBC and of high risk for humans.

Key words: zooarchaeology; pinnipedpaleotuberculosis; Tierra del Fuego; Middle-Late Holocene

RESUMEN

En 2003 fue descripto Mycobacterium pinnipedii como responsable de producir tuberculosis (TB) en pinnípedos otáridos de Argentina y Australia. Esta especie es la única de origen marino del Mycobacterium tuberculosis Complex (MBTC), que afecta también a otros mamíferos domésticos, silvestres y humanos. Debidoa numerosos registros de tuberculosis humana precolombina en Sudamérica, surge en 2010-2011 una nueva hipótesis sobre el origen de esta zoonosis a través de los pinnípedos otáridos. En 2014 esta hipótesis fue confirmada a través de estudios de ADN antiguo de tres momias (700-1.000 años AP) de la cultura Chiribaya (Perú). En virtud de no existir registros de TB ósea en muestras zooarqueológicas de pinnípedos de Sudamérica y del resto del mundo, nuestro estudio tuvo como finalidad examinar muestras zooarqueológicas de pinnípedos otáridos de sitios costeros del Canal Beagle (Tierra del Fuego, Argentina), siendo el más antiguo Túnel I (6.400-4.300 años AP). Se analizó un total de 4.138 vértebras, de las cuales el 0,46% mostró lesiones compatibles con TB. Complementariamente, se propone una nueva hipótesis sobre posibles mecanismos de diseminación de Mycobacterium pinnipedii, planteando las posibles rutas de transmisión a las diferentes especies de pinnípedos otáridos del Hemisferio Sur. Mycobacterium pinnipedii es una de las micobacterias más agresivas del MBTC y de mayor riesgo para los humanos.

Palabras clave: zooarqueología; paleotuberculosis en pinnípedos; Tierra del Fuego; Holoceno Medio-Tardío

Introduction

The different species of mycobacteria responsible for TB have been grouped in the so-called Mycobacterium tuberculosis Complex (MTBC).The genus Mycobacteriumpresumably originated over 150 million years ago (Daniel 2006), but the evolutionary age of the species responsible for TB in humans and domestic animals are still controversial.It has even been recently suggested that the MTBCwould beolder than previously believed, and that Neanderthals were possibly infected (Donoghue 2017; Houldcroft&Underdown 2016).

According to researches by several specialists, the age of the Most Recent Common Ancestor (MRCA) of TB was estimated in 50.000 to 150.000 years (Brites&Gagneux 2015;Briteset al. 2018; Comas et al. 2015; Gagneux 2018; Hershkovitzet al. 2015; Masson et al. 2015).Since then, the dissemination of TB occurred by clonal expansion among human communities, giving rise to seven lineages. The study ofComas et al. (2013), support that one of the ancient phylogeographic lineages of TB emerged about 67.000 years ago, coinciding with the first stage of modern human out of Africa dispersal.

Until the late nineteenth and early twentieth centuries, TB was exclusively linked to two pathogenic species: Mycobacterium tuberculosis, whoseprimary host is the human species,and Mycobacterium bovis, whoseprimary host is domestic cattle.The species within the MTBC have undergone numerous taxonomic and nomenclatural changes over time. Studies carried out a few years ago defined the MTBCas comprising at least nine species of the genus Mycobacterium, of which eight has primary hosts of the terrestrial environment and only one a primary hosts of the marine environment.However, recent phylogenomic studies suggest taxonomic and nomenclatural changes for several MTBC members, modifying their category of species to infrasubspecific categoriesas “variant” of Mycobacterium tuberculosis(Riojas et al. 2018).

Tuberculosis in the marine environment was discovered at the end of the 20thcentury in Australia and Argentina, and it was responsible for producing TB in marine mammals (Bastida et al. 1999; Bernardelli et al. 1996; Cousins 1987, 1995; Cousins et al. 1990; Forshaw & Phelps 1991).These records expanded the knowledge about the characteristics of the mycobacteria that affected six species of pinnipeds of the family Otariidae of the Southern Hemisphere, both from Oceania (Neophoca cinerea, Arctocephalus pusillus doriferusandArctocephalus forsteri) (Cousins 1987, 1995; Forshaw & Phelps 1991; Thompson et al. 1993;Woods et al. 1995), and from South America and the Subantarctic Islands (Otaria flavescens, Arctocephalus australisandArctocephalus tropicalis) (Bastida et al. 1999; Bernardelli et al. 1996; Lucero et al. 2019; Rodríguez& Bastida 1993).This discovery led to a new scenario in the knowledge of TB due to the incorporation of marine species as primary hosts in this zoonosis (Bastida et al. 1999; Bernardelli et al. 1996; Cousins 1995; Cousins et al. 1993).

The first studies carried out on these pinnipeds indicated that the isolated mycobacteria had characteristics compatible with both Mycobacterium tuberculosis and Mycobacterium bovis. On this basis, an international and interdisciplinary team was set up to study the subject, applying the genetic techniques available at that time. As a result of these studies, a new species, Mycobacterium pinnipedii, was identified and described (Cousins et al. 2003). This new species is also one of the most aggressive mycobacteria of the MTBC and constitutes a potential health risk for humans,as well as for wild and domestic mammals that can be in contact with pinnipeds infected with TB (Bastida et al. 2010; Jurczynskiet al. 2011; Kierset al. 2008; Lacave et al. 2009; Loeffler et al. 2014; Moser et al. 2008; Thompson et al. 1993).

Regarding the arrival of TB in South America, until the end of the 20th century,it was considered that this disease had been introduced by the European conquerors in the sixteenth century, in spite of the fact that there were archaeological records of human bone remains with lesions compatible with TB corresponding to periods long before their arrival.During the 1970s, pre-contact human remains with clear indications of TB lesions were identified for the first time in Peru (Allison et al. 1973).From then on, numerous cases based on osteological and/or molecular methods were also described in different regions of South America (Arriazaet al. 1995; Arrietaet al. 2011; Constantinescu 1999; GarcíaGuraieb 2006; Guichónet al. 2015; Klaus et al. 2010; Saloet al. 1994;Sotomayoret al.2004; Wilbur & Buikstra 2006).These records continuously generated uncertainties about the origin and mechanism of TB dissemination in South America (Daniel 2000; Gómez i Prat&Mendonça de Souza 2003).

Along the Holocene, hunter-gatherers in the Atlantic and Pacific coasts of southern South America depended upon pinnipeds as one of their main trophic resources with high energy value (Bastida et al. 2007; Bastida & Rodríguez 2009; Jessup 1990a, 1990b; Legoupil 1989; Martinoli 2017; Muñoz 2011; Orquera & Piana 1999b; Panarello et al. 2006; Schiavini 1993; Zangrando 2014; Zangrando et al. 2011; Zangrando et al. 2014). Taking into account this trophic habit,Bastida et al. (2010, 2011) presented a new highly feasible hypothesis, which proposed the entry of pre-Columbian TB into South America through wildlife and in particular, through otariid pinnipeds.This hypothesis waslater confirmed by the study of ancient DNA of Mycobacterium pinnipedii isolated from the spinal column of Peruvian mummies belonging to the Chiribaya culture of southern Peru; radiocarbon analyses indicated ages between 1028 and 1280 years AD (Bos et al. 2014).It should be noted that part of the population of the Chiribaya culture inhabited coastal sectors and based its subsistence upon intertidal invertebrates, marine fish and pinnipeds (Jessup 1990a, 1990b; Lozada&Buikstra 2005; Rostworowski 1975; Sandweisset al. 1989).

The possible dissemination mechanisms of Mycobacterium pinnipediialong the Southern Hemispherewereunknown, although it was suspected thatArctocephalus tropicaliscould be a key species in this process (Bastida et al. 1999,2007, 2011).As before the present study there were no records of TB in pinnipeds of archaeological coastal sites of South America and the rest of the world, we developed our researchin zooarchaeological assemblages from the northern coast of the Beagle Channel (Tierra del Fuego, Argentina). This coastal area was inhabited by marine hunter-gatherer-fishers with an efficient technology aimed at the exploitation of pinnipeds since 6400 years BP (7200 cal. years BP) (Martinoli 2017; Orquera & Piana 1999a, 1999b;Schiavini 1993; Zangrando et al. 2011).

The main objective of our study is to present the results of an extensive review ofthe zooarchaeological collection at the Centro Austral de Investigaciones Científicas (CADIC-CONICET), in order to identify bone lesionsin otariid pinnipeds compatible with tuberculosis and discuss the implications of this disease for human populations of South America in pre-contacttimes.Finally, we propose a new hypothesis onMycobacterium pinnipedii dissemination in the Southern Hemisphere and mechanisms of contagion between different otariid pinniped species.

Study area

The Beagle Channel runs west-east between the southern coast of the Isla Grande de Tierra del Fuego and the Navarino and Hoste Islands. This channel has approximately 180 km long and 4 to 7 km wide. The region is characterized by a mountainous geography and an irregular coast, which varies in topography between high-slope rocky seashores on the western section and low-slope coastlines to the east (Figure 1).

The mean annual temperature is 6.5°C. The terrestrial environment is characterized by woods of Nothofagus (N. betuloides and N. pumilio) located between the coastline and 600 m above sea level, and by a variety of faunal taxa. Important populations of marine mammals and a broad taxonomical diversity of birds, fish and mollusks inhabit coasts and seascapes.

Figure 1: Archipelago of Tierra del Fuego and archaeological sites. 

The Beagle Channel was inhabited by hunter-gatherer populations adapted to the marine environment from 6400 radiocarbon years BP to the 19th century. The coastal archaeology of this region is characterized by shell midden formations, which provide evidence of a predominant consumption of marine resources and lithic, bone, and shell technology (Gusinde 1986; Orquera& Piana1999a, 2009). Two species of pinnipeds are abundant in the southern tip of South America: the South American fur seal (Arctocephalus australis) (Figure 2a) and the South American sea lion (Otariaflavescens) (Figure 2b). However, zooarchaeological assemblages of the Beagle Channel are widely dominated by Arctocephalusaustralis (Orquera&Piana 1999a; Schiavini 1993).

Figure 2: a) South American Fur Seal (Arctocephalus australis) (J.L. Vázquez Mazzini). b) South American Sea Lion (Otaria flavescens) (J.L. Vázquez Mazzini). 

Zooarchaeological assemblages

In this paper we analyze zooarchaeological assemblages from four archaeological sites: Second Component of Túnel I, Túnel II, Ajej I and Kaiyawoteha II. These sites are located at different coastal settings near Ushuaia city (Figure 1). The Second Component of Túnel I encompassessettlements between 6400 and 4300 radiocarbon years BP (Orquera&Piana 1999a). The other three sites correspond to the Late Holocene: Túnel II presents radiocarbon ages of 1140±90 BP and 1120±90 BP (Orquera&Piana 1999a), while Ajej I presents ages of 1400±90 and 1270±180 years BP (Piana et al. 2008), beingKaiyawoteha II the later site with 730±45 years BP.

Archaeological deposits at the Beagle Channel generally maintain good conditions of bone preservation due to two main factors: 1. Formation processes of these deposits normally imply high accumulation rates of shells, there being relatively small lapses of exposure of bone material at the surface (Orquera & Piana 1992), and 2. Conditions of pH and humidity are stable in these sediments (Linse 1992; Orquera&Piana 2000, 2001).

Materials and methods

The study of zooarchaeological bone samples from otariids was carried out at the Laboratory of Anthropology of CADIC-CONICET.The studied samples came from the four sites indicatedin Figure 1, and the largest number of analyzed bone remains corresponds to Túnel I and II.Arctocephalus australis was the marine mammal species most exploited by hunter-gatherer-fishers, and therefore the one most represented in archaeological sites (Martinoli 2018; Orquera & Piana 1999a;Orquera et al. 2012; Schiavini 1993).

The search for TB bone lesions was focused on vertebrae, since bone modifications produced by this disease appear mainly in the spine.We analyzed a total of 4,138 vertebrae,most of them correspond to juvenile and adult males.Vertebrae with lesions compatible with TB were selected and prepared for diagnostic imaging studies.Digital Rx, 3D External Computed Tomography and thin cuts of vertebral bodies were obtained (Philips Equipment, Brilliance 64 CT Scanner and Siemens Equipment, Scope Power).

Regarding the transmission routes and probable dissemination mechanisms of Mycobacterium pinnipedii, a first hypothesis was formulated based on information from vagrant specimens of Arctocephalus tropicalis (Figure 3). These specimens werefrequently recordedin the South American coasts and throughout the Southern Hemisphere since 1977 to 2016 (Castello&Pinedo 1977; Jefferson et al. 2015; Prado et al. 2016;among many other publications).

Figure 3: Subantarctic Fur Seal (Arctocephalus tropicalis) (J.L. Vázquez Mazzini). 

On the other hand, we used published data on molecular markers (mtDNA) of vagrant specimens from the South-West Atlantic, in order to determine the origin of these specimens and their possible routes of dispersal from the rookeries at Gough, Crozet, Macquarie, Amsterdam, Saint Paul, and Prince Edward islands, located north of the Antarctic Convergence of the Atlantic, Pacific and Indian Oceans (Jefferson et al. 2015; Machado Ferreira et al. 2007; Wynen et al. 2000).

Results

The vertebrae from Túnel I, Trench XIII, Layer D19 to D/F showed the highest number of lesions related to TB. From the total studied bone samples, only 0.46% of Arctocephalusaustralis vertebrae showed lesions compatible with TB. We studied the most representative lesions of TB (0.14%) further bydiagnostic imaging (Table 1).We also found non-infectious vertebra alterations, such as osteophytes, in 2% of the studied bone samples.

ArchaeologicalSites

Table 1: Number and percentage of vertebrae studied in each archeological site (Beagle Channel, Argentina) and vertebrae with lesions compatible with TB (0.46% of n= 4,138 analyzed). 

The thoracic vertebrae XI, XII and XIII of the most affected individual were completely fused, forming a single rigid unit (ankylosis). On the other hand, the articulation between vertebrae X and XI presented a clear angulation that moved away from the normal horizontal axis of the spine (Figure 4a) as human xiphosis.The thoracic vertebra XII was massively reabsorbed, showing a process of destruction (osteolysis) and bone reabsorption; only the upper part of the spinous process was evident(Figure 4b). On theanterior surface of thevertebral body XI there was also important bone destruction, forming a very big cavity (Figure 4c).

Figure 4: a) Thoracic vertebrae VII to XIII of Arctocephalus australis with severe lesions compatible with TB. b)Ankyloses of vertebrae XI, XII and XIII. Vertebra XII massively reabsorbed. c).Vertebra XI with big cavity in the anterior surface. 

Digital Rx images showed rarefaction of the vertebral bodies due to a decrease in bone density (osteopenia), destruction of intervertebral discs and ankyloses processes.The presence of small marginal osteophytes, secondary to spondylosis, was visualized in the thoracic vertebrae VII, VIII, IX and X, suggesting that they belonged to an adult specimen. Thoracic vertebrae XI, XII and XIII presented a marked alteration in their morphology, while thoracic vertebra XI had an important and irregular depression of its anterior articular surface. Vertebrae XI, XII and XIII were massively fused with a clear resorption of vertebra XII(Figure 5). The 3D Computed Tomography (CT) allowed us to obtain external images of the affected vertebrae (Figure 6).

Figure 5: Rx of thoracic vertebrae VII to XIII of Arctocephalus australis.Vertebrae XI, XII and XIII with collapse of vertebral bodies and evident angling of the spine (xiphosis). 

Figure 6: 3D Computed Tomography showing external lesions in thoracic vertebrae of Arctocephalus australis

While CT sagittal cross sections images clearly showed the collapse of the vertebral bodies, destruction and absence of intervertebral discs.The bodies of the fused thoracic vertebrae XI, XII and XIII were collapsed, losing their normal morphology. Cortical were thinned and the posterior wall of the XI vertebral body protrudes into the neural canal due to vertebral collapse. Laminae were thickened due to secondary bone remodeling as a consequence of chronic inflammatory changes. All these lesions produceda reduction in the diameter of the neural canal (stenosis) (Figures 7a and 7b).Caries in the trabecular bone at the level of the vertebral bodies were also observed

Figure 7: a-b) Computed Tomography sagittal cross section of thoracic vertebra XI of Arctocephalus australis showing severe bone destruction and secondary bone remodeling. 

Regarding the role of Arctocephalus tropicalisin TB disease, the spatial distribution analysis of vagrant specimens shows clear coincidences with the dynamic of Southern Hemisphere surface ocean currents and the winds associated with them. In this way, A. tropicalis becomes the nexus species with the rest of the southern latitude otariids, being also the seal species with the greatest geographical displacement of the world.

Discussion

Zoonoses and implications for human populations in the past

In Argentina the incidence of TB in modern specimens ofOtaria flavescens and Arctocephalus australisis similar in both species and does not exceed 2% in soft tissue lesions, without considering the incidence in juvenile individuals and pups (Loureiro 2014). In Uruguay, including pups and all age population classes of both species, the incidence of TB is higher, ranging between 5.7% and 9.8% in soft tissues, also including individuals presenting no symptoms of the disease (Arbizaet al. 2012; Castro Ramos et al. 2006). After TB was discovered during the 1980sin local otariid pinnipeds from Argentina and Uruguay, the disease was also recorded in a vagrant specimen of Arctocephalus tropicalis stranded on the northern coast of Buenos Aries Province (Argentina) (Bastida et al. 1999).Years later new TB cases in vagrant A. tropicalis individuals, both on the northern coast of the Province of Buenos Aires and in Patagonian coasts were also diagnosed.

Regarding the studied zooarchaeologicalmaterial of Beagle Channel sites, our data indicate that the TB lesions observedmacroscopically in bone samples is 0.46% and correspond exclusively to Arctocephalusaustralis.Until now there is no record of paleotuberculosis bone lesions in Otaria flavescens samples from Beagle Channel sites. Three main causes could be related with this fact: 1. Very low presence of Otaria flavescens bone remains in the archaeological deposits at the Beagle Channel; 2. Lower density population of Otaria flavescens in relation to that of Arctocephalus australis, the dominant pinniped species of Tierra del Fuego, and 3. Hunting techniques from canoes that required pinnipeds of smaller size.

All bone lesions compatible with TB in the zooarchaeological material analyzed correspond exclusively to thoracic vertebrae, which together with the first lumbar vertebrae are generally the most affected by this disease in different groups of mammals (Balázset al. 2015; Holloway et al. 2011; Holloway et al. 2013).The highest incidence of TB bone lesions in the spine is due to the fact that the vertebrae are extremely vascularized, which facilitates bacterial colonization of bones through the blood flow. These lesions could be differentiated from similar bone lesions caused by other diseases (neoplasms, osteomyelitis, brucellosis, etc.),in the same way that Arrietaet al. (2014) could differentiate TB lesions in human archaeological bones.However, Luna et al. (2017) mention that the non-specificity of various bone pathologies generally it is impossible to make an accurate differential diagnosis.

Regarding the studies of ancient mycobacterial DNA of the MTBC, it is important to mention that molecular studies do not always provide reliable results for paleopathological diagnoses, which depend not only on the preservation state of the bone sample, but also on contamination by environmental bacteria that could have colonized post-mortembone remains.These bacteria can be non-tuberculous mycobacteria and be responsible for false positives of TB (Eisenhofer&Weyrich 2019; Guichónet al. 2015; Müller et al. 2016).In these and other cases, it is convenient to resort to a combination of mycolic, mycocerotic, micoliphenic and phthiocerol biomarker assays (Lee et al. 2015; Thi-Nguyen-Ny Tran et al. 2011; Wilbur et al. 2009).It is also important to mention that the excess of exposition of TB lesions ofbone samplesto radiation by Computed Tomography orRx studiescan inactivate the ancient DNA for its genetic study and give false negatives (Donoghue 2017).

The airway is the most frequent entry route of the MTBC mycobacteria to the host. Based on our pinniped necropsies of modern specimens, the respiratory system is affected initially, followed by the lymph nodes, and important organs such as the liver, kidneys and heart, which may be also involved (Bastida et al. 1999; Bernardelli et al. 1996). Another route of entry is the sputum that the individual swallows, also sneezing close to another individual and rubbing nosesbetween individuals.

As a final process of pulmonary TB, after several years,the bone system can also be compromised, mainly the vertebral column, as in Pott's disease or xiphosis in humans (Holloway et al. 2013; Klaus et al. 2010; Roberts & Buikstra 2003; Vergara Santos et al. 2015).This form of bacillaryinfection in aquatic and diving species, such as pinnipeds, would not allow the animals to reach the end of the bone lesion process, as the lung conditionaffects diving, a vital behavior through whichpinnipeds access their preys, basically fish and squid.For this reason, we estimate that bone lesions in pinnipeds could only occur when the mycobacteria enter through the bloodstream directly into the bone tissue.A feasible way of entry could be through the frequent injuries that occur during the struggles that adult male pinnipeds maintain during the reproductive season.

As we indicated at the beginning of this article, cases of TB have been identified in human remains in different regions of South America through osteological and/or molecular descriptive methods, for both agro-pastoral societies (Allison et al. 1973; Arriazaet al. 1995; Sotomayor et al. 2004; Arrietaet al. 2011; Saloet al. 1994) and hunter-gatherer societies (Constantinescu 1999;GarcíaGuraieb 2006;Guichónet al. 2015).It should be noted that all these cases are restricted to the Late Holocene (last 2000 years).The results in the present paper suggest that TB infection could have occurred at least 6400 years BP (7200 years cal. AP) in the southern extreme of South America.This argument is feasible due to the high infectious-contagious capacity of Mycobacterium pinnipedii that could have affected the hunter-gatherers who captured, processed and consumed pinnipeds since the Middle Holocene (Bastida et al. 2011; Martinoli 2017; Muñoz 2011; Orquera & Piana 1999a, 2009; San Román 2008; Schiavini 1993; Zangrando 2014). Moreover, humans could transmit the infection to others due to close contact, household types and rigorous environmental conditions of the Fuegian Archipelago.

Bioarchaeological records of the Middle Holocene are very scarce in the southern tip of South America,so that we are unable to evaluate the incidence of TB in hunter-gatherer populations. However, the presence of TB has been molecularly confirmed in a pre-contact human individual from the Northern Tierra del Fuego for the Late Holocene, although the MTBC species could not be defined (Guichónet al. 2015).

Another aspect to consider is the physiographic and environmental characteristics of the Fuegian Archipelago, which provides favorable conditions for the feeding of marine mammals, as well as for the refuge of diseased or physically exhausted pinnipeds.Precisely these individuals would be the ones of easier capture by coastal hunter-gatherers, and this would increase the possibility of TB infectionsfrom pinnipeds.

Hypothesis about dissemination ofMycobacterium pinnipedii

When TB was detected for the first time in wild pinnipeds from Australia and Argentina, it was assumed that the disease was transmitted by terrestrial species affected by Mycobacterium bovis or M. tuberculosis. Based on this assumption, two hypotheses emerged on the origin of TB in marine mammals.

One of them stated that the animals were infected with Mycobacterium bovis by coastal cattle (Cousins et al. 1993). The other hypothesis speculated on the alternative that humans could have transmitted TB to otariid pinnipeds. This hypothesis was based on the possibility that pinnipeds scavenged on tuberculous human bodies thrown into the sea from vessels, as it was habitual until the 19th century (Cousins et al. 1993); however, there are no references of such trophic behavior in pinnipeds (Bastida & Rodríguez 2009). Both hypotheses were discarded years later, when it was discovered that TB in pinnipeds was produced bya new TB species namedMycobacterium pinnipedii (Cousins et al. 2003).

Regarding the dissemination process of Mycobacterium pinnipedii in the oceanic environment, there were many unknowns and only preliminary progress has been made (Bastida et al. 1999, 2011). In order to understand this process in the Southern Hemisphere, it is necessary to consider some biological and ecological features of Arctocephalus tropicalis, as well as some oceanographic aspects affecting its movements.

Even thoughArctocephalus tropicalis is not a species exhibiting migratory behavior, it is characterized by having a high number of vagrant individuals, which travel the longest distances known for otariid pinnipeds, in some cases exceeding 16,000 km (Machado Ferreira et al. 2007). In this way, individuals of this key species affected with TB could have reached the South American coasts and diverse regions of the Southern Hemisphere, taking advantage of the surface ocean currents and widening the geographic range of the species (Bastida et al. 1999, 2007; Campos et al. 1995; Reid et al. 1977;Rodríguez et al. 1995; Sudreet al. 2013; Zanre& Bester 2011).

The breeding colonies of this species are found on the islands Tristan da Cunha/Gough, Prince Edward/Marion, Crozet, Amsterdam/Saint Paul and Macquarie, forming the Subantarctic belt of islands located near the Antarctic Convergence of the Atlantic, Indian and Pacific Oceans (Figure 8) (Bester 1980, 1981, 1987, 1990; Bester et al. 2003).

Figure 8: Breeding island colonies of Arctocephalus tropicalis in the Southern Hemisphere. 

The most important breeding colonies are those of Gough Island, Prince Edward islands and Amsterdam Island (Bester 1990; Bester et al. 2003), which concentrate 95% of the population of Arctocephalus tropicalis. The current population exceeds 400,000 individuals (Bester et al. 2003, 2006; Hofmeyr et al. 2017).

Vagrant specimens of this species have been recorded from the south of the Antarctic Convergence in South Georgia Islands, South Shetland Islands and even in the Antarctic Continent, as well as in the South Island of New Zealand, in Australia and Tasmania, in Mauritius and Rodrigues Islands, in Madagascar, in the Comores Islands, in Tanzania, South Africa, Angola, Gabon, Brazil, Uruguay, Argentina, Chile and Juan Fernández Island (Jefferson et al. 2015).

As already mentioned, the presence of vagrant specimens of Arctocephalus tropicalis on the South American coast is related to the main southern surface currents, both the South Atlantic Anticyclone vortex and the Western Ocean Drift.These currents constitute the main dispersion routes of the vagrant specimens of Arctocephalus tropicalis to South America, South Africa, Australia and New Zealand (Bastida et al. 1999, 2010, 2011; Bastida & Rodríguez 2009; Rodríguez et al. 1995; Shannon et al. 1973).The presence of vagrant specimens is recorded mainly during the winter and spring of the Southern Hemisphere.

The presumption that the increase of vagrant specimens of Arctocephalus tropicalis is a direct consequence of the sealer exploitation ending by the 20th century is no longer valid.Recent archaeological studies indicate the presence of this species in areas away from its breeding colonies, such as the archaeological sites in southern Brazil (1200 years BP) (Volkmer de Castilho & Simões-Lopes 2008), and in Argentina (Santa Cruz) (between 1290 and 1170 years BP) (Castro et al. 2010).In other words, there were always a certain number of vagrant individuals able to travel very long distances from their breeding colonies in A. tropicalis populations, even before the inception of commercial exploitation of this species.

The genetic studies of Wynen et al.(2000) and Machado Ferreira et al. (2007) allowed confirming the colonies of origin of the vagrant specimens, relating the molecular profiles of these specimens with the genetic profiles of the populations in their reproductive areas. The vagrant specimens of our region, which includes Brazil, Uruguay, Argentina and Chile, come from three genetically identifiable reproductive units that, geographically, correspond to the following Subantarctic islands: (1) Gough, (2) Amsterdam and (3) Marion, Macquarie and Crozet (MMC) (Figure 8).

Figure 9: Dissemination of vagrant specimens of Arctocephalustropicalis in the Southern Hemisphere. Breeding colonies of origin and displacement routes related to main ocean surface currents. 

Arctocephalustropicalis travel from their breeding colonies to the north, using the anticyclone system of the South Atlantic.Thus,Subantarctic fur sealsare deflected by the surface current to South Africa and move northward through the Benguela Current along the Atlantic African coast, until reaching the Equatorial South Current that moves from east to west.Following the branch of this current that moves southward, vagrant’s individuals can reach the northern coast of Brazil (Velozo et al. 2009; Vigário 2010) and keep moving further south (Figure 9). Thus, these specimens can arriveinthe coasts of Uruguay and Argentina, where the Brazilian Current meets the Malvinas/Falklands Current, forming a confluence area and a subtropical front in the north of Patagonia.Based on these new studies, it was possible to confirm the dispersal process of vagrant specimens of A. tropicalis (Bastida& Rodríguez 2009; Bastidaet al. 1999; Rodríguez et al. 1995).

Other vagrant specimens that arrived in the South American coasts would come from the Amsterdam Islandand the MMCgroup, located at longer distances(Machado Ferreira et al. 2007).Those specimens move along the Western Circumpolar Drift that runs clockwise around the Antarctic Continent, travelling distances that exceed 16,000 km to the coasts of Brazil.Along this route, vagrant specimens can also interact with individuals in rookeries of other pinnipeds in the coasts of Australia, New Zealand and the islands and coasts of Chile and Peru.In addition to these dispersal routes, the distribution of vagrant specimens across the Indian Ocean may also occur (Jefferson et al. 2015) (Figure 9).

The dispersion routes of vagrant specimens of Arctocephalus tropicaliswere based on the currently available knowledge of the surface ocean currents of the Southern Hemisphere. This was possible thanks to the oceanic research initiated in the 1970s, based on the use of drift cards and oceanographic drifting buoys (Shannon et al. 1973). Recently, sophisticated remote sensors have been used, producing excellent models of oceanic dynamics (Sebilleet al. 2018).

Another important aspect to consider in the dissemination of TB is that vagrant specimens of Arctocephalus tropicalis may also interact with individuals of other pinniped species in the Southern Hemisphere, concentrated in reproductive and non-reproductive colonies in high densities, facilitating TB transmission to these other species (Bastida& Rodríguez 2009; Bastidaet al. 1999, 2011).In South America, A.tropicalis can occasionally associate to Otaria flavescens and Arctocephalus australisin rookeries along both the Atlantic and the Pacific coasts.

In the Pacific Ocean, Arctocephalus tropicalisis related to the colony of Arctocephalus philippiiin the island of Juan Fernández (Torres & Aguayo 1984).In New Zealand and Australia A. tropicalis also interacts with Arctocephalus forsteri, Neophoca cinerea, Phocarctos hookeri and Arctocephalus pusillus doriferus.Furthermore, in South Africa, A. tropicalis is related to Arctocephaluspusilluspusillus, and in the Subantarctic Belt with Arctocephalus gazella (Bastida et al. 1999, 2007; Jefferson et al. 2015).The interactions of A. tropicalis with other pinniped species have been so close that it has even hybridized with several of them, such as Arctocephalus gazella, Arctocephalus forsteri and Arctocephalus philippii, achieving hybrid specimens that can reach sexual maturity and reproduce successfully (Jefferson et al. 2015) (Figure 9).

Considering all these factors, we hypothesize that Arctocephalus tropicalis was a key species in the process of dissemination and contagion of TB in the Southern Hemisphere, and in turn, this argument facilitates the understanding of cases of pre-contact TB in South America and other southern regions (Bastida et al. 2010, 2011; Bos et al. 2014).

Final remarks

Several studies have reported bone lesions compatible with TB in human remains at different archaeological contexts of the Late Holocene before the arrival of Europeans in South America.The disease was identified both based on bone lesions and on molecular studies in several pre-contact South American societies.More recently, it was possible to identify the ancient DNA of Mycobacterium pinnipedii isolated from the vertebral column of Peruvian mummies dated to 1000 years BP and belonging to the Chiribaya culture, and related with the exploitation of otariid pinnipeds.

Thepresent paper provides first evidence of lesions compatible to TB in bone remains of pinnipeds of Tierra del Fuego with dates of approximately 6400 years BP (7200 years cal. BP).This record suggeststhat TB could have been transferred to human populations in the southern tip of South America in the Middle Holocene through the practice of capture and consumption of these marine mammals.In turn, the evidence shown here supports the hypothesis about the dissemination of Mycobacterium pinnipedii in the Southern Hemisphere through vagrant specimens of Arctocephalus tropicalis and the interaction of this species with different austral otariid pinnipeds.

Tuberculosis records in pinnipeds of both the Atlantic and Pacific coasts of South America, as well as TB bone lesions in human remains, would indicate two main areas of probable dissemination of this zoonosis in the Argentine territory. On the one hand, an austral income through Tierra del Fuego and the Patagonian coasts, where there are numerous pinnipedcolonies, species that have been traditionally consumed by hunter-gatherer-fishers and, on the other hand, an entry from the north of Argentina, associated to the penetration of the Inca Empire into our territory and Incas acting as disseminators of this pre-existing zoonosis in the South America Pacific coast.

Acknowledgements: We especially thank Lics. Luis Orquera and Ernesto Piana for providing the zooarchaeological samples of CADIC for the present study, also Lic.Germán Pinto Vargas andDr. Angélica M. Tivoli for their help and hospitality.We also thank Drs. Florence Nicoleau, Matías Landi and José Echeverría, of the Instituto Radiológico (Mar del Plata) and Dr. Diego Quirós of Imágenes MDQ-Sede Clínica Colón (Mar del Plata), for the Rx and TC images and TB lesion complementary descriptions. To Galler Collection (National History Museum, Switzerland) for their images used in the analysis ofTB bone lesions.Finally, we thank Dr. Victoria Lichtschein for her carefully review of the manuscript and improvement of our English. The PICT 2010-0575 and PICT 2017-1230, covered part of the travel expenses.

Bibliography Cited

Allison, M.J., D. Mendoza and A. Pezzia 1973 Documentation of a Case of Tuberculosis in Pre-Columbian America.American Review of Respiratory Disease107(6): 985-991. [ Links ]

Arbiza, J., A. Blanc, M. Castro-Ramos, H. Katz, A. Ponce de León and M. Clara 2012 Uruguayan Pinnipeds (Arctocephalusaustralisand Otaria flavescens): Evidence of Influenza Virus and Mycobacterium pinnipedii Infections. In New Approaches to the Study of Marine Mammals, Chapter 7, (ed. by A. Romero and E.O. Keith), pp. 151-183. INTECH, London. [ Links ]

Arriaza, B.T., W. Salo, A.C. Auferherideand T.A. Holcomb 1995 Pre-Columbian tuberculosis in Northern Chile: molecular and skeletal evidence. American Journal Physical Anthropology98: 37-45. [ Links ]

Arrieta, M.A., M.A. Bordachand O.J. Mendonça [ Links ]

2011 Tuberculosis precolombina en el noroeste argentino (NOA). El cementerio de Rincón Chico 21 (RCH 21), Santa María, Catamarca. Intersecciones en Antropología12: 245-260. [ Links ]

2014 Pre-Columbian Tuberculosis in Northwest Argentina: Skeletal Evidence from Rincón Chico 21 Cementery. International Journal of Osteoarchaelogy 24: 1-14. [ Links ]

Balázs, J., P.G. Zádori, C. Vandulek, E. Molnár, B. Ôsz, Z. Bereczki, L. Paja, A.Palkó, O. Fogas, A. Zink, A. NerlichandG. Pálfi 2015 Morphological and paleoradiological studies of Pott’s disease cases. Acta Biologica Szegediensis 59(2): 211-216. [ Links ]

Bastida, R., J. Loureiro, V. Quse, A. Bernardelli, D. Rodríguez andE. Costa 1999 Tuberculosis in a wild subantarctic fur seal from Argentina.Journal of Wildlife Diseases35(4): 796-798. [ Links ]

Bastida, R., D. Rodríguez, E. Secchiand V. da Silva [ Links ]

2007Mamíferos Acuáticos de Sudamérica y Antártida. Vázquez Mazzini Editores, Buenos Aires. [ Links ]

Bastida, R.and D. Rodríguez [ Links ]

2009Marine Mammals of Patagonia & Antarctica. Vázquez Mazzini Editores (SecondEdition),Buenos Aires. [ Links ]

Bastida, R., R. GuichónandV. Quse [ Links ]

2010 Escenarios para el origen y dispersión de la tuberculosis en Patagonia Austral y Tierra del Fuego. Nuevos actores y líneas de evidencia. Arqueología Argentina en el Bicentenario de la Revolución de Mayo,Tomo I (ed. byBárcena J., and Chiavazza H.), pp. 227-230. Mendoza, Argentina. [ Links ]

Bastida, R., V. Quse and R. Guichón [ Links ]

2011 La Tuberculosis en grupos de cazadores recolectores de Patagonia y Tierra del Fuego: nuevas alternativas de contagio a través de la fauna silvestre. Revista Argentina de Antropología Biológica13 (1): 83-95. [ Links ]

Bernardelli, A., R. Bastida, J. Loureiro, H. Michelis, M. Romano, A. CataldiandE. Costa [ Links ]

1996 Tuberculosis in sea lions and fursealsfromthesouthwesternAtlanticcoast. Revue Scientifique et Technique, Office International des Epizooties 15(3) : 985-1005. [ Links ]

Bester, M.N. [ Links ]

1980 Population increase in the Amsterdam Island fur seal Arctocephalustropicalisat Gough Island. South African Journal of Zoology15: 229-234. [ Links ]

1981 Seasonal changes in the population composition of the fur seal Arctocephalus tropicalis at Gough Island. South African Journal of Wildlife Research11(2): 49-55. [ Links ]

1987 Subantarctic fur seal Arctocephalus tropicalis at Gough Island (Tristan da Cunha Group). Status, biology and ecology of fur seals.Proceedings of international symposium and workshop (ed.by Croxall J.P., and Gentry R.L.), pp. 57-64.US Department of Commerce, National Marine Fisheries Service, Cambridge, Seattle. [ Links ]

1990 Population trends of subantarctic fur seals and southern elephant seals at Gough Island. South African Journal of Antarctic Research20: 9-12. [ Links ]

Bester, N.N., P.G. Ryan andB.M. Dyer [ Links ]

2003 Population numbers of fur seals at Prince Edward Island, South Ocean. African Journal of Marine Science25: 549-554. [ Links ]

Bester, M.N., J.W. Wilson, M.H. Burleand G.J.G. Hofmeyr [ Links ]

2006 Population trend of Subantarctic fur seals at Gough Island. South African Journal of Wildlife Research36(2): 191-194. [ Links ]

Bos, K.I., K.M. Harkins, A. Herbig, M. Coscolla, N. Weber, I. Comas, S.A. Forrest, J.M. Bryant, S.R. Harris, V.J. Schuenemann, T.J. Campbell, K. Majander, A.K. Wilbur, R.A. Guichón, D.L. Steadman, D.C. Cook, S. Niemann, M.A. Behr, M. Zumárraga, R. Bastida, D. Huson, K.Nieselt, D. Young, J. Parkhill, J.E. Buikstra, S. Gagneux, A.C. Stone and J. Krause [ Links ]

2014 Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature514: 494-497. [ Links ]

Brites, D. andS. Gagneux [ Links ]

2015 Co-evolution of M. tuberculosis and H. sapiens.Immunological Reviews264: 6-24. [ Links ]

Brites, D., C. Loiseau, F. Menardo, S. Borrell, M.B. Boniotti, R. Warren, A. Dippenaar, S.D. Parsons, C. Beisel, M.A. Behr, J.A. Fyfe, M. Coscolla and S. Gagneux [ Links ]

2018 A New Phylogenetic Framework for the Animal-Adapted Mycobacterium tuberculosis Complex. Front Microbiology 9: 2820. [ Links ]

Campos, E.J., J.L. Miller, T.J. Müller and R.G. Peterson [ Links ]

1995 Physical Oceanography of the Southwest Atlantic Ocean. Oceanography8(3): 87-91. [ Links ]

Castello, H.P.and M.C. Pinedo 1977 Primeiro registro deArctocephalustropicalispara a costa do Rio Grande do Sul (Pinnipedia, Otaridae).Atlântica2: 111-119. [ Links ]

Castro, A., M. Zubimendi, P. Ambrústolo, L. Mazzitelli, M. Beretta, L. Ciampagna, V. Trola, H. Hammond, L. ZilioandM. Plischuck [ Links ]

2010 Sitio Cueva del Negro: un caso de aprovechamiento intensivo de los recursos marinos en la costa norte de Santa Cruz (Patagonia Argentina).Arqueología Argentina en el Bicentenario de la Revolución de Mayo,Tomo I(ed. byBárcena J.and Chiavazza, H.), pp. 309-314. Mendoza, Argentina. [ Links ]

Castro Ramos, M., H. Katz, A. Moraña, M. Tiscornia, D. Morgades and O. Castro [ Links ]

2006 Tuberculosis en pinnípedos (Arctocephalus australis y Otaria flavescens) de Uruguay. En Bases para la Conservación y el Manejo de la Costa Uruguaya (ed. by R. Menafra, L. Rodríguez-Gallego, F. Scarabino and D. Conde), pp. 315-320. Vida Silvestre Uruguay, Montevideo. [ Links ]

Comas, I., M. Coscolla, T.Luo, S. Borrell, K. Holt, M.K. Maeda, J. Parkhill, B. Malla, S. Berg, G. Thwaites, D. Yeboah-Manu, G. Bothamley, J. Mei, L. Wei, S. Bentley, S. Harris, S. Niemann, R. Diel, A. Aseffa, Q. Gao, D. Young and S. Gagneux 2013 Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nature Genetics 45(10):1176-1182. [ Links ]

Comas, I., E. Hailu,T. Kiros, S. Bekele,W. Mekonnen,B. Gumi,R. Tschopp, G. Ameni, H. Glyn, B. Robertson,G. Goig, D. Stucki,S. Gagneux, A. Aseffa,D. Youngand S. Berg [ Links ]

2015 Population Genomics of Mycobacterium tuberculosis in Ethiopia Contradicts the Virgin Soil Hypothesis for Human Tuberculosis in Sub-Saharan Africa. Current Biology25: 3260-3266. [ Links ]

Constantinescu, F. [ Links ]

1999 Evidencias bioantropológicas para modos de vida cazador recolector terrestre y marítimo en los restos óseos humanos de Tierra del Fuego. Anales del Instituto de la Patagonia26: 137-174. [ Links ]

Cousins, D.V. [ Links ]

1987 ELISA for detection of tuberculosis in seals. Veterinary Record121 (13): 305. [ Links ]

Cousins, D., B. Francis, B. Gow, D. Collins and C. McGglashan [ Links ]

1990 Tuberculosis in captive seals. Bacteriological studies on an isolate belonging to the Mycobacterium tuberculosis complex. Research in Veterinary Science48: 196-200. [ Links ]

Cousins, D., S. Williams, R. Reuter, D. Forshaw, B. Chadwick, D. Coughran, P. Collins andN. Gales [ Links ]

1993 Tuberculosis in wild seals and characterization of the seal bacillus.Australian Veterinary Journal 70 (3): 92-97. [ Links ]

Cousins, D.V. [ Links ]

1995 Tuberculosis in seals in Australia. Proceedings of the Australian Veterinary Association Conference, pp.51-57. Melbourne, Australia. [ Links ]

Cousins, D., R. Bastida, A. Cataldi, V. Quse, S. Redrobe, S. Dow, P. Duignan, A. Murray, C. Dupont, N. Ahmed, D. Collins, W. Butler, D. Dawson, D. Rodríguez, J. Loureiro, M.I. Romano, A. Alito, M. Zumárraga and A. Bernardelli [ Links ]

2003 Tuberculosis in seals caused by a novel member of the Mycobacterium tuberculosis complex: Mycobacterium pinnipediisp.nov. International Journal of Systematic and Evolutionary Microbiology53: 1305-1314. [ Links ]

Daniel, T.M. [ Links ]

2000 The origins and precolonial epidemiology of tuberculosis in the Americas: can we figure them out? International Journal of Tuberculosis and Lung Disease4 (5): 395-400. [ Links ]

Daniel, T.M. [ Links ]

2006 The history of tuberculosis. Respiratory Medicine100: 1862-1870. [ Links ]

Donoghue, H.D. [ Links ]

2017 Insights gained from ancient biomolecules into past and present tuberculosis-a personal perspective. International Journal of Infectious Diseases56: 176-180. [ Links ]

Eisenhofer, R. andL.S. Weyrich [ Links ]

2019 Assessing alignment-based taxonomic classification of ancient microbial DNA. PeerJ7: e6594. [ Links ]

Forshaw, D. andG. Phelps [ Links ]

1991 Tuberculosis in a captive colony of pinnipeds.Journal Wildlife Disease27: 288-295. [ Links ]

Gagneux, S. [ Links ]

2018 Ecology and evolution of Mycobacterium tuberculosis. Nature Review Microbiology16 (4): 202-213. [ Links ]

García Guraieb, S. [ Links ]

2006 Salud y enfermedad en cazadores-recolectores del Holoceno tardío en la cuenca del Lago Salitroso (Santa Cruz). Intersecciones en Antropología7:37-48. [ Links ]

Gómez i Prat, J.and S. Mendonça de Souza [ Links ]

2003 Prehistoric tuberculosis in America: adding comments to a literature review. Memórias do InstitutoOswaldo Cruz98 (1):151-159. [ Links ]

Guichón, R.A., J.E. Buikstra, A.C. Stone, K.M. Harkins, J.A. Suby, M. Massone, A.P. Iglesias, A. Wilbur, F. Constantinescu and C.R. Martín [ Links ]

2015 Pre-Columbian tuberculosis in Tierra del Fuego?Discussion of the paleopathological and molecular evidence.International Journal of Paleopathology11: 92-101. [ Links ]

Gusinde, M. [ Links ]

1986Los indios de Tierra del Fuego (II): Los Yámanas. Centro Argentino de Etnología Americana, Buenos Aires. [ Links ]

Hershkovitz, I., H. Donoghue, D.Minnikin, H. May, O. Lee, M. Feldman, E. Galili, M. Spigelman, B. Rothschild and G. Bar-Gal 2015 Tuberculosis origin: The Neolithic scenario. Tuberculosis95 (1): S122-126. [ Links ]

Hofmeyr, G.J., P.J. de Bruyn, M. Wegeand M.N. Bester [ Links ]

2017 A conservation assessment of Arctocephalus tropicalis. Child MF.The Red List of Mammals of South Africa, Swaziland and Lesotho (ed. by Roxburgh L., Do Linh S.E., Raimondo D., and Davies-Mostert H.T.), pp59.South African National Biodiversity, Institute and Endangered Wildlife Trust, South Africa. [ Links ]

Holloway, K.L., R.J. Henneberg, M. de Barros Lopes and M. Henneberg [ Links ]

2011 Evolution of human tuberculosis: a systematic review and meta-analysis of paleopathological evidence. HOMO- Journal of Comparative Human Biology62 (6): 402-58. [ Links ]

Holloway, K.L., K. Link, F. Rühliand M. Henneberg 2013 Skeletal Lesions in Human Tuberculosis May Sometimes Heal: An Aid to Palaeopathological Diagnoses. PLoS One8(4): e62798. [ Links ]

Houldcroft, C.J. andS.J. Underdown [ Links ]

2016 Neanderthal Genomics Suggests a Pleistocene Time Frame for the First Epidemiologic Transition. American Journal of Physical Anthropology 160:379-388. [ Links ]

Jefferson, T., M. Webber and R. Pitman [ Links ]

2015Marine Mammals of the World: A Comprehensive Guide to their Identification. AcademicPress, Singapore. [ Links ]

Jessup, D. [ Links ]

1990a Desarrollos generales en el Intermedio Tardío en el Valle de Ilo, Perú. Informe Interno del Programa Contisuyodel Museo Peruano de Ciencias de la Salud, pp. 1-32.SouthernPeruCopperCorporation, Moquegua, Perú. [ Links ]

1990b Rescate arqueológico en el Museo de Sitio de San Gerónimo, Ilo.Trabajos arqueológicos en Moquegua Perú3 (ed.byWatanabe L.K., Moseley M.E. and Cabieses F.)pp. 151-165.Programa Contisuyo del Museo Peruano de Ciencias de la Salud, SouthernPeruCopperCorporation, Moquegua, Perú. [ Links ]

Jurczynski, K., K.Lyashchenko, D. Gomis, I. Moser, R. Greenwald and P. Moisson [ Links ]

2011 Pinniped tuberculosis in Malayan tapirs (Tapirusindicus) and its transmission to other terrestrial mammals. Journal of Zoo and Wildlife Medicine: official publication of the American Association of Zoo Veterinarians 42: 222-227. [ Links ]

Kiers, A., A. Klarenbeek, B. Mendelts, D. Van Soolingen andG. Koëter [ Links ]

2008 Transmission of Mycobacterium pinnipedii to humans in a zoo with marine animals.International Journal of Tuberculosis and Lung Disease 12: 1469-1473. [ Links ]

Klaus, H., A. Wilbur, D. Temple, J. Buikstra, A. Stone, M. Fernandez, C. Wester and M. Tam [ Links ]

2010 Tuberculosis on the north coast of Peru: skeletal and molecular paleopathology of late pre-Hispanic and post-contact mycobacterial disease. Journal of Archaeological Science37: 2587-2597. [ Links ]

Lacave, G., A. Malliot, V. Alerte, M. Boschiroli andA. Lecu [ Links ]

2009 Atypical case of Mycobacterium pinnipedii in a Patagonian sea lion (Otariaflavescens) and tuberculosis cases history review in pinnipeds. EAAM Mycobacterium pinnipedii Workshop Report, pp. 155-156.Duisburg Zoo, Duisburg, Germany. [ Links ]

Lee, O.Y., H.H. Wu, G.S. Besra, B.M. Rothschild, M. Spigelman, I. Hershkovitz, G.K. Bar-Gal, H.D. Donoghue and D.E. Minnikin [ Links ]

2015 Lipid biomarkers provide evolutionary signposts for the oldest known cases of tuberculosis.Tuberculosis (ed.by Robertson B.E., and Britton W.J.), pp. 216. Elsevier, London. [ Links ]

Legoupil, D. [ Links ]

1989Ethno-Archéologie dans les archipels de Patagonia: les nomades marines de Punta Baja. Editions Recherche sur les Civilisations, Mémoire 84, París. [ Links ]

Linse, A.R. [ Links ]

1992 Is bone safe in a shell midden? In Decipheringa Shell Midden (ed.by Stein J.), pp.327-345. Academic Press, San Diego. [ Links ]

Loeffler, S., G. de Lisle, M. Neill, D. Collins, M. Price-Carter, B. Paterson and K. Crews [ Links ]

2014 The Seal Tuberculosis Agent, Mycobacterium pinnipedii, Infects Domestic Cattle in New Zealand: Epidemiologic Factors and DNA Strain Typing. Journal of WildlifeDiseases50 (2): 180-187. [ Links ]

Loureiro, J. [ Links ]

2014 Evolución del Estudio de la Tuberculosis en Pinnípedos de Argentina. Resúmenes del Tercer Congreso Latinoamericano de Rehabilitación de Fauna Marina, pp. 27-30. San Clemente del Tuyú, Argentina. [ Links ]

Lozada, M.and J.E. Buikstra [ Links ]

2005 Pescadores and Labradores among the Señorío of Chiribaya in Southern Peru. Us and Them: Archaelogy and Ethnicity in the Andes (ed. by Richard Martin Reycraft), pp.206-225. Cotsen Institute of Archaeology.University of California, Los Angeles. [ Links ]

Lucero, S., S. Rodríguez, P. Teta, G. Cassini and G. D’Elía [ Links ]

2019 Solving a long-standing nomenclatural controversy: designation of a neotype for the southern sea lion Otaria flavescens (Shaw, 1800). Zootaxa 4555 (2):296-300. [ Links ]

Luna, L., C. Aranda and A. Amorín Alves [ Links ]

2017 Reflexiones sobre el relevamiento y análisis comparativo de patologías osteoarticulares en restos esqueletales humanos. Revista Argentina de Antropología Biológica 19 (1): 1-8. [ Links ]

Machado Ferreira, J., L. de Oliveira, L. Wynen, M.Bester, C. Guinet, N. Moraes-Barros, F. Martins, M. Muelbert, I. Moreno, S. Siciliano, P.Ott andS. Morgante [ Links ]

2007 Multiple origins of vagrant Subantarctic fur seals: a long journey to the Brazilian coast detected by molecular markers. Polar Biology31(3): 303-308. [ Links ]

Martinoli, M. [ Links ]

2017 Pautas de procesamiento y consumo de pinnípedos en la costa Sur de Tierra del Fuego e Isla de los Estados: un análisis comparativo. Arqueología23(3): 173-196. [ Links ]

2018 Modalidades de explotación, procesamiento y consumo de pinnípedos en la margen meridional de Tierra del Fuego. Tesis Doctoral, Facultad de Filosofía y Letras, Universidad de Buenos Aires, Buenos Aires. [ Links ]

Masson, M., Z. Bereczki, E. Molnár, H.D. Donoghue, D.E. Minnikin, O.Y. Lee, H.H. Wu, G.S. Besra, I.D. Bull and G. Pálfi [ Links ]

2015 7000 year-old tuberculosis cases from Hungary - Osteological and biomolecular evidence.Tuberculosis95 (1): 13-17. [ Links ]

Moser, I., W.M. Prodinger, H. Hotzel, R. Greenwald, K.Lyashchenko, D. Bakker, D. Gomis, T. Seidler, C. Ellenberger, U. Hetzel, K. Wuennemann and P. Moisson 2008 Mycobacterium pinnipedii: Transmission from South American sea lion (Otariabyronia) to Bactrian Camel (Camelusbactrianusbactrianus) and Malayan tapirs (Tapirusindicus). Veterinary Microbiology 127:309-406. [ Links ]

Müller R., C.A. Roberts and T.A. Brown [ Links ]

2016 Complications in the study of ancient tuberculosis: Presence of environmental bacteria in human archaeological remains. Journal of Archaeological Science68: 5-11. [ Links ]

Muñoz, S. [ Links ]

2011 Human-pinniped relationships in Southern Patagonia.Current issues and future research agenda.Trekking the shore: changing coastlines and the antiquity of coastal settlement (ed. byN.F Bicho, J.A. Haws, andL.G. Davis), pp. 305-332. Springer, New York. [ Links ]

Orquera L.A.and E.L. Piana [ Links ]

1992 Un paso hacia la resolución del palimpsesto. Análisis espacial en la ArqueologíaPatagónica (ed.byL. Borrero, and J.L. Lanata) pp. 21-52. Ayllu, Buenos Aires. [ Links ]

1999aArqueología de la región del canal Beagle (Tierra del Fuego, Argentina). Sociedad Argentina de Antropología, Buenos Aires. [ Links ]

1999bLa vida material y social de los Yámanas. Editorial Eudeba, Buenos Aires. [ Links ]

2000 Composición de Conchales de la costa del canal Beagle (Tierra del Fuego, República Argentina) (Primera parte). Relaciones de la Sociedad Argentina de Antropología XXV: 249-274. [ Links ]

2001 Composición de Conchales de la costa del canal Beagle (Tierra del Fuego, República Argentina) (Segunda parte). Relaciones de la Sociedad Argentina de AntropologíaXXVI: 345-368. [ Links ]

2009 Sea Nomads of the Beagle Channel in southernmost South America: over six thousand years of coastal adaptation and stability. Journal of Island & Coastal Archaeology4: 1-21. [ Links ]

Orquera, L.A., E.L. Piana, D. Fiore and A.F. Zangrando [ Links ]

2012Diez Mil Años de Fuegos. Arqueología y Etnografía del Fin del Mundo. Editorial Dunken, Buenos Aires. [ Links ]

Panarello, H., A.F. Zangrando, A. Tessone, L.F. Kozameh andN. Testa [ Links ]

2006 Análisis comparativo de paleodietas humanas entre la región del Canal Beagle y Península Mitre: perspectivas desde los isótopos estables. Magallania34(2): 37-46. [ Links ]

Piana, E.L, M. Vázquez andM. Álvarez [ Links ]

2008 Nuevos resultados del estudio del sitio Ajej I: un aporte a la variabilidad de estrategias de los canoeros fueguinos. Runa 29: 87-100. [ Links ]

Prado J.H.F., P.H. Mattos, K.G. Silva and E.R. Secchi [ Links ]

2016 Long-Term Seasonal and Interannual Patterns of Marine Mammal Strandings in Subtropical Western South Atlantic. PLoS One11 (1): e0146339. [ Links ]

Reid, J.L., W.C. Patzert andW.D. Nowlin [ Links ]

1977 On the characteristics and circulation of the Southwestern Atlantic Ocean.Journal of Physical Oceanography7 (1): 62-91. [ Links ]

Riojas, M.A., K.J. McGough, C.J. Rider-Riojas, N. Rastogi andM.H. Hazbón [ Links ]

2018 Phylogenomic analysis of the species of the Mycobacterium tuberculosis complex demonstrates that Mycobacterium africanum, Mycobacterium bovis, Mycobacterium caprae, Mycobacterium microti and Mycobacterium pinnipedii are later heterotypic synonyms of Mycobacterium tuberculosis. International Journal of Systematic and Evolutionary Microbiology 68: 324-332. [ Links ]

Roberts, C.A. and J.E. Buikstra [ Links ]

2003The bioarchaeology of tuberculosis: a global perspective on a re-emerging disease. University Press of Florida, Gainesville. [ Links ]

Rodríguez, D. andR. Bastida [ Links ]

1993 The southern sea lion, Otariabyronia or Otariaflavescens? Marine Mammal Science 9 (4): 372-381. [ Links ]

Rodríguez, D., R. Bastida, S. Morónand J. Loureiro [ Links ]

1995 Registros de lobos marinossubantárticos, Arctocephalustropicalis, en Argentina. VI Congreso Latinoamericano de Ciencias del Mar. Resumen 639, p. 170. Mar del Plata. Argentina. [ Links ]

Rostworowski de Diez Canseco, M. [ Links ]

1975 Pescadores, artesanos, y mercaderes costeños en el Perú prehispánico. Revista del Museo Nacional41:311-349. [ Links ]

Salo, W.L., A.C. Aufderheide, J. Buikstraand T.A. Holcomb [ Links ]

1994 Identification of Mycobacterium tuberculosis DNA in a pre-ColumbianPeruvianmummy. Proccedings of the National Academy of Science91: 2091-2094. [ Links ]

Sandweiss, D.H., J.B. Richardon, E.J. Reitz, J.T. Hsu andR.A. Feldman [ Links ]

1989 Early maritime adaptations in the Andes: Preliminary studies at the Ring Site, Peru.Ecology, settlement, and history in the Osmore Drainage, Peru(ed. by Rice D.S., Stanish C., and Scarr P.R.)pp.18-35. BAR International series 545(i), British Archaeological Reports, Oxford. [ Links ]

San Román, M. [ Links ]

2008 La explotación de mamíferos en el sitio Bahía Buena: economía de canoeros tempranos de Patagonia (Estrecho de Magallanes).Arqueología de Fuego-Patagonia. Levantando piedras, desenterrando huesos… y desvelando arcanos (ed.byMorello F., Martinic M., Prieto A., andBahamonde G.), pp. 295-310. Ediciones CEQUA, Punta Arenas, Chile. [ Links ]

Schiavini, A.M. [ Links ]

1993 Los lobos marinos como recurso para cazadores-recolectores marinos: el caso de Tierra del Fuego. Latin American Antiquity4:346-366. [ Links ]

Sebille, E., S.M. Griffiesc, R. Abernatheyd, T.P. Adamse, P. Berloff, A. Biastochg, B. Blankeh, E.P.Chassigneti, Y. Chengj, C.J. Cotterf, E. Deleersnijderk, K. Döösn, H.F. Drakeo, S. Drijfhoutq, S.F. Garye,A.W. Heeminkl, J. Kjellssonr, I.M. Koszalkag, M. Langea, C. Liqueh, G.A. MacGilchristu, R. Marshq, C.G. Mayorga Adamev, R. McAdama, F. Nencioliw, C.B. Parisj, M.D. Piggotts, J.A. Poltonv, S. Rühsg, S.H.Shahm, M.D. Thomasx, J. Wangy, P.J. Wolframz, L.Zannatand J.D. Zikaa [ Links ]

2018 Lagrangian Ocean Analysis: Fundamentals and practices. Ocean Modelling121: 49-75. [ Links ]

Shannon, L.V., G.H. Stander and J.A. Campbell [ Links ]

1973 Oceanic circulation deduced from plastic drift cards. Sea Fisheries Branch, South Africa, Department of Industries.InvestigationalReport108: 1-31. [ Links ]

Sotomayor H., J. Burgos and M. Arango 2004 Demostración de tuberculosis en una momia prehispánica colombiana por la ribotipificación del ADN de Mycobacterium tuberculosis. Biomédica 24 (Supl): 18-26. [ Links ]

Sudre J., C. Maesand V. Garcon [ Links ]

2013 On the global estimates of geostrophic and Ekman surface currents.Limnology and Oceanography: Fluids and Environments3:1-20. DOI:10.1215/21573689-2071927. [ Links ]

Thi-Nguyen, N.T., G. Aboudharam, D.Raoultand M. Drancourt [ Links ]

2011 Beyond ancient microbial DNA: nonnucleotidic biomolecules for paleomicrobiology. BioTechniques50:370-380. [ Links ]

Thompson P.J., D.V. Cousins, B.L. Gow, D.M. Collins, B.H. Williamson and H.T. Dagnia [ Links ]

1993 Seals, seal trainers, and mycobacterial infection. American Review of Respiratory Disease147: 164-167. [ Links ]

Torres, D.and A. Aguayo [ Links ]

1984 Presence of Arctocephalustropicalis(Gray 1872) at the Juan Fernandez Archipelago, Chile.ActaZoologicaFennica172: 133-134. [ Links ]

Velozo, R., A. Schiavetti andL. Wagner Dórea-Reis [ Links ]

2009 Analysis of subantarctic fur seal (Arctocephalus tropicalis) records in Bahia and Sergipe, north-eastern Brazil. JMBA2 - Marine Biodiversity Records.Links ]

Vergara-Santos, A., P. Barrios-Fuentes andF. González-Pérez [ Links ]

2015 Diagnóstico por imágenes de tuberculosis vertebral. Presentación de un caso. MediSur13(2): 303-308. [ Links ]

Vigário, D.C. [ Links ]

2010 Composição Etária, Craniometria e Ocorrências dos Lobos-marinhos Arctocephalusaustralise Arctocephalustropicalisno Litoral do Estado do Paraná. Thesis. Universidade Federal do Paraná, Brasil. [ Links ]

Volkmer de Castilho, P.andP. Simões-Lopes [ Links ]

2008 Sea mammals in archaeological sites on the southern coast of Brazil.Revista do Museu de Arqueologia e Etnologia18: 101-113. [ Links ]

Wilbur, A.K.and J.E. Buikstra [ Links ]

2006 Patterns of tuberculosis in the Americas - How can modern biomedicine inform the ancient past? Memórias do InstitutoOswaldo Cruz101(II): 59-66. [ Links ]

Wilbur, A.K., A.S. Bouwman, A.C. Stone, C.A. Roberts, L.A. Pfister, J.E. Buikstra, andT.A. Brown [ Links ]

2009 Deficiencies and challenges in the study of ancient tuberculosis DNA. Journal of Archaeology Science36(9):1990-1997. [ Links ]

Woods, R., D. Cousins, R. Kirkwood andD. Obendorf [ Links ]

1995 Tuberculosis in a wild Australian fur seal (Arctocephalus pusillus doriferus) from Tasmania.Journal of Wildlife Disease31: 83-86. [ Links ]

Wynen, L., S. Goldsworthy, C. Guinet, M. Bester, I. Boyd, I. Gjertz, G. Hofmeyr, R.W.G. White and R.W. Slade [ Links ]

2000 Post sealing genetic variation and population structure of two species of fur seals (Arctocephalus gazella and A. tropicalis). Molecular Ecology9:299-314. [ Links ]

Zangrando, A.F., M. Vázquez andA. Tessone [ Links ]

2011Los cazadores-recolectores del extremo oriental fueguino. Arqueología de Península Mitre e Isla de los Estados. Publicaciones de la Sociedad Argentina de Antropología,Buenos Aires. [ Links ]

Zangrando, A.F. [ Links ]

2014 Human Predation on Pinnipeds in the Beagle Channel. Neotropical and Caribbean Aquatic Mammal: Perspectives from Archaeology and Conservation Biology (ed.by Muñoz S., Götz C., and Ramos Roca E.), pp. 161-174. Nova, New York. [ Links ]

Zangrando, A.F., H. Panarelloand E.L. Piana [ Links ]

2014 Zooarchaeological and Stable Isotopic Assessments on Pinniped-Human Relations in the Beagle Channel (Tierra del Fuego, Southern South America).International Journal of Osteoarchaeology24 (2): 231 - 244. [ Links ]

Zanre, R. andM.N. Bester 2011 Vagrant Subantarctic fur seal in the Mayumba National Park, Gabon. African Zoology46:185-187. [ Links ]

Received: December 19, 2019; Accepted: March 07, 2020

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License