SciELO - Scientific Electronic Library Online

 
vol.26 número2Tectonostratigraphic significance of the neogene sedimentary record of northwestern Austral-Magallanes Basin, Argentinean PatagoniaThe Austral-Magallanes basin (southern Patagonia): a synthesis of its stratigraphy and evolution índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

  • No hay articulos citadosCitado por SciELO

Links relacionados

  • No hay articulos similaresSimilares en SciELO

Compartir


Latin American journal of sedimentology and basin analysis

versión On-line ISSN 1851-4979

Lat. Am. j. sedimentol. basin anal. vol.26 no.2 La Plata dic. 2019

 

VOLUMEN ESPECIAL

Tectonic evolution of the southern Austral-Magallanes Basin in Tierra del Fuego

 

Rocío E. Gallardo Jara1, Matías C. Ghiglione1, Lisandro Rojas Galliani2

1 Instituto de Estudios Andinos-CONICET, Departamento de Ciencias Geológicas, Universidad de Buenos Aires, Argentina. rocio.gallardo.jara@gmail.com
2 Enap Sipetrol S.A., Santiago, Chile.

Received November 16, 2018
Accepted August 1º, 2019
Available online August 4, 2019


ABSTRACT

The evolutionary history of the Austral Magallanes has been object of several studies both in Chile and Argentina, due to its importance as hydrocarbon and gas producer. In the evolution of southern South America, a stage of intracratonic rifting development between the Middle-Late Jurassic has been recognized in a wide part of southern Patagonia that generated an extensional basin (Rocas Verdes basin). Following the creation of a synrift fault system the basins evolved towards an Early Cretaceous postrift sag stage that deposits a thick pelitic succession in a marine shelf environment, constituting these deposits in the main reservoir and source rock for the oil plays. During the middle-Late Cretaceous in the entire Austral Patagonian region took a place a compressional regime over the east and south margin of southernmost South America. Product of Andean growth in this sector were produced a magmatic arc, a Basement domain and fold-and-thrust belt, and a foreland basin related to flexural loading. Since the Neogene to Recent, the Fueguian Andes were affected by transpressive tectonics related to the opening of the Drake Passage. This contribution is a review, and pretend to account the stratigraphic and the structural evolution of the basin of the southernmost Patagonia and its fold-and-thrust belt associated, summarized in a regional stratigraphic correlations for Late Jurassic–Quaternary rock units throughout the southern Austral-Magallanes basin. However, new ideas and interpretation are presented supported by new information at the regional level, using a north-to-south direction seismic-line reflection, well-log data and their regional correlation. The tectonic evolution of the studied depocenters is related to structural phases recognized in the Patagonian-Fueguian Andes and the Burdwood bank, constituting their southern active boundary. These depocenters migrated to the east in the southern Patagonian Andes and towards the north and east in Tierra del Fuego and Malvinas. The thrust advance is evidenced by discordances within the basin fill that coalesce towards the external depocenter and depositional bulge, characteristic geometric stacking patterns and configuration of clinoforms. These key surfaces enabled the definition of four evolutionary stages: Foreland I (Coniacian (?) - Maastrichtian), Foreland II (early-middle Paleocene – middle Eocene), Foreland III (early-middle Eocene - Oligocene) and Foreland IV (early Miocene - Pliocene).

Keywords: Austral-Magallanes basin; Tierra del Fuego; Fueguian folds-and-thrust belt; Basement domain; Southernmost Andes.


 

INTRODUCTION

The Patagonian-Fueguian Andes form the Southern Andean Orogenic Arc (Maffione, 2016), with a N-S orientation in the area of Última Esperanza Province in Chile, progressively veering towards a ESE-WNW trend in Tierra del Fuego Island (Fig. 1; Dalziel et al., 1973; Ghiglione and Cristallini, 2007; Poblete et al., 2014, 2016; Rapalini et al., 2015; Maffione, 2016; Torres-Carbonell et al., 2016). The orogenic wedge and structural domains are persistent along the arc, and continue towards the offshore along the South America-Scotia plate boundary into the Burdwood bank (Platt and Phillips, 1995; Galeazzi, 1998; Ghiglione et al., 2010). The Austral-Magallanes basin is host in the concave side of the arc (Ghiglione and Cristallini, 2007), and is connected with Malvinas basin through a continuous southern depocenter (Fig. 1; Biddle et al., 1986; Mpodozis and Ramos, 1989; Wilson, 1991; Ghiglione et al., 2010, 2016). The Fueguian fold-and-thrust belt host the proximal facies of the Late Cretaceous-Eocene basal foreland, and is affected by strike-slip tectonics of the Magallanes-Fagnano fault system (MFFZ) since the late Cenozoic (Fig. 1; Cunningham, 1993; Diraison et al., 2000; Ghiglione et al., 2002; Lodolo et al., 2003; Rosello, 2004; Ghiglione et al., 2013; Betka et al., 2016).


Figure 1.
Location map of main morphostructural units in the Austral-Magallanes and South Malvinas basins. After Ghiglione et al., (2010). Abbreviations: LV: Lago Viedma; LA: Lago Argentino; SB: Sierra Baguales; MS: Magellan Strait; SA: Seno Almirantazgo; DC: Darwin Cordillera; FL: Fagnano Lake; BC: Beagle Channel; BP: Brunswick Peninsula; RI: Riesco Island; TdF: Tierra del Fuego; FZ: Fault zone; MFFS: Magallanes-Fagnano Fault System; NSR: North Scotia Ridge. Blank contours indicate sediment thickness in Kilometers; Orange Lines are the regional seismic sections; My in yellow indicate the time of collision of each ridge segment.

During the Middle-Late Jurassic this sector evolved as an intracratonic rift system associated to Gondwana break-up and the opening of the Wedell Sea and the Atlantic Ocean (Dalziel et al., 1974; Bruhn et al., 1978; Biddle et al., 1986; Stern and De Witt, 2003; Calderón et al., 2007). In Tierra del Fuego, volcanic and volcaniclastic Jurassic rocks from the Tobífera/Lemaire Formation (Figs. 2a and 3; Hanson and Wilson, 1991; Wilson, 1991; Moraga, 1996; Féraud et al., 1999; Pankhurst et al., 2000) were deposited in grabens and half-grabens in angular unconformity over previously deformed basement. Subsequent to the earlier synrift stage, the Rocas Verdes back-arc developed between ~140- 120 My along the active margin, while the cratonic region was characterized by continuous thermal subsidence and deposition of transgressive systems (Fig. 2b; Caminos et al., 1981; Biddle et al., 1986; Robbiano et al., 1996; Olivero and Martinioni, 2001; Olivero and Malumián, 2008).


Figure 2.
Schematic diagram of the evolution of the basin geometry for the Rocas Verdes Austral- Magallanes basin. a) Rift stage (Middle- Upper Jurassic) with extensional phase and crustal stretching, b) Sag-thermal and back-arc stage (Lower Cretaceous), oceanic crust emplacement and formation of structurally controlled rift sub-basins, c) Early compression (Lower-Upper Cretaceous), d) Onset of foreland stage, Austral-Magallanes foreland basin (Upper Cretaceous). Modified from Calderón et al. (2016).


Figure 3.
Stratigraphic correlations for Late Jurassic-Quaternary rock units throughout the southern Magallanes (Austral) basin. Compiled from: Von Goetsche and Huca, 1953; Céspedes, 1957; Álvarez-Marrón et al., 1993; Fildani et al., 2003; Hervé et al., 2004; Hervé, 2005; Álvarez et al., 2006; Olivero and Malumián, 2008; Le Roux et al., 2010; Cuitiño et al., 2010, 2012, 2015; Fosdick et al., 2011, 2015; McAtamney et al., 2011; Mpodozis et al., 2011; Otero et al., 2012; Varela et al., 2012; Bostelmann et al., 2013; Malumián et al., 2013; Velásquez, 2016; Sáez, 2017; Pinto et al., 2018. Abbreviations: FU: foreland unconformity; RVB: Rocas Verdes basin; DCMC: Darwin Cordillera Metamorphic Complex; MFFZ: Magallanes-Fagnano Fault Zone; SPB: South Patagonian Batholith.

The tectonic regime changed in the Late Cretaceous, with the beginning of a compressive period and progressive closure of the Rocas Verdes basin (Dott et al., 1977; Biddle et al., 1986; Wilson, 1991; Mella, 2001; Mpodozis et al., 2011), generating intense deformation and metamorphism of the basement domain, and progressively involving the Mesozoic sedimentary units in its advance (Figs. 2b and 2c) (Nelson et al., 1980; Dalziel and Brown, 1989; Kohn et al., 1993; Cunningham, 1995). During compression that lasted until the Neogene (Ghiglione and Ramos, 2005) the Austral-Magallanes basin can be divided into four foreland stages (widely discussed by Mpodozis et al., 2011), during which the foreland basin system together with the deformation front migrated continuously towards the craton (Álvarez-Marrón et al., 1993; Kraemer, 2003; Rojas and Mpodozis, 2006; Klepeis et al., 2010; Gallardo, 2014; Ghiglione et al., 2016).
Our work presents a review of the stratigraphic and the structural evolution of the southern Austral- Magallanes basin and its associated fold-and-thrust belt, summarized in regional stratigraphic correlations for Late Jurassic–Neogene rock units. Furthermore, new ideas and interpretation are proposed, supported by new information that we present at the regional level, using seismic-line and well-log data and their regional correlation. We recognize four distinctive foreland phases, based on seismic information and surface data, broadly described by an unpublished work from Mpodozis et al. (2011), and mentioned by Gallardo (2014). Definition of multiple foreland stages and identification of their main characteristics and stratigraphic relationships represent a move towards a more complete knowledge of the southern depocenter of the Austral-Magallanes basin, a critical location due to its interactions with Malvinas basins and the development of the Scotia arch.

GEOLOGICAL SETTING

The tectonic evolution of the basal sequences of the Austral-Magallanes basin is related to Jurassic - Mesozoic processes that affected Patagonia (Gust et al., 1985; Pankhurst et al., 2000, Barker, 2001; Mpodozis et al., 2011). During this extensional phase a series of grabens and half-grabens of NW-SE direction were developed in Tierra del Fuego (Moraga, 1996; Navarrete-Rodríguez, 2006), and associated transfer zones of NE-SW orientation (Ghiglione et al., 2013). The synrift corresponds to volcanic and volcaniclastic sediments of variable thickness (Figs. 2a and 3; Ibañez, Tobífera, Le Maire and Complejo El Quemado Formations) (Caminos et al., 1981; Uliana et al., 1986; Hanson and Wilson, 1991; Féraud et al., 1999; Pankhurst et al., 2000; Olivero and Martinioni, 2001; Olivero and Malumián, 2008). Presently, the major extensional sub-basins are located in Tierra del Fuego, and corresponds among others to Oriental, Gaviota, Calafate and Fueguino. The Jurassic fault system was reactivated during Neogene, generating the Magellan Strait (Diraison et al., 1997, 2000) and the transverse segmentation of the fold-and-thrust belt (Ghiglione et al., 2013).
As a consequence of the extensional phase, oceanic crust emerged along the western margin of the southernmost Patagonian Andes. Remains of this basin, known as Rocas Verdes basin (Bruhn et al., 1978; Stern and De Witt, 2003; Calderón et al., 2007, 2016), are registered as discontinuous string outcrops of ophiolitic complexes south of 51° SL (Fig. 2b) (Sarmiento complex in Última Esperanza, Tortuga complex in south of Tierra del Fuego, and the Larsen Harbour formation of the South Georgia Island) (Dalziel et al., 1974, 1975; Suárez and Petigrew, 1976; Stern, 1980; Dalziel, 1981; Suárez et al., 1985; Kraemer, 2003; Calderón et al., 2007, 2016). Nonetheless, the idea that the South Georgia Island being part of the Rocas Verdes basin is currently discussed (Eagles, 2010; Eagles and Jokat, 2014; Poblete et al., 2016). Since the Early Cretaceous to Paleogene the southernmost Patagonia was affected by a progressive tectonic rotations and bending, related with the closure of the Rocas Verdes basin or sinistral strike–slip tectonics in the Cenozoic (Dalziel et al., 1974; Burns et al., 1980; Cunningham, 1993; Poblete et al., 2016). Paleomagnetic studies for the Upper Cretaceous and Paleocene evidence a counterclockwise rotation of the Fueguian Andes
relative to the southern Patagonian Andes and related with the closure of the Rocas Verdes basin (Poblete et al., 2014; 2016). The basin subsequently evolved towards a postrift sag stage developed on top of the Jurassic volcanic and volcaniclastic rocks (Biddle et al., 1986; Robbiano et al., 1996; Harambour, 1998; Olivero and Martinioni, 2001; Olivero and Malumián, 2008), characterized by continuous thermal subsidence (Fig. 2b). During this Late Jurassic and the Early Cretaceous events, hundreds of meters of marine clastic sediments were deposited in a retrogradacional marine shelf and deep marine environment (Biddle et al., 1986; Robbiano et al., 1996; Olivero and Malumián, 2008) that spreads towards the east and north in Austral- Magallanes basin (Mpodozis et al., 2011).
The beginning of this transgressive event is marked by the fluvial to transgressive shallow marine deposits of the Springhill Formation characterized by quartzitic sandstones with clasts of pyramidal quartz (Thomas, 1949a,b; Biddle et al., 1986; Schwarz et al., 2011; Richiano et al., 2016). Shallow deposits grade laterally into a deep-sea marine successions represented mainly by claystones (Fig. 3; Zapata Formation in Última Esperanza; Erezcano in Península Brunswick and Isla Riesco; Estratos with Favrella in Magallanes subsurface; Río Mayer Inferior in El Calafate city and Argentino Lake, Yaghán and Río Jackson in Tierra del Fuego in Chile and Beauvoir in Argentina) (Katz and Watters, 1966; Biddle et al., 1986; Macellari et al., 1989; Wilson, 1991; Olivero and Martinioni, 2001; Harambour, 2002; Kraemer, 2003; Rojas and Mpodozis, 2006; Olivero and Malumián, 2008; Richiano et al., 2012, 2015). During the Aptian- Albian occurs a fast oceanic expansion both in the Atlantic Ocean and the Weddell Sea, along with an acceleration in convergence rate between the Pacific and South America plates (Bartoloni and Larson, 2001; Ghiglione et al., 2015).
Additionally, this phase was defined by the beginning of western subduction at the inner edge of Rocas Verdes basin, ending between ~101-88 My(Wilson, 1991; Fildani et al., 2003; McAtamney et al., 2011; Varela et al., 2012). Evidence of this evolutionary stage has been documented to the south of the Beagle Channel in the Tierra del Fuego, in the Yaghán and Hardy formations (Katz, 1963; Dott et al., 1977; Suárez et al., 1985; Olivero and Martinioni, 2001; Olivero and Malumián, 2008) and in the Canal Bertrand Formation in Riesco Island (Castelli et al., 1992; Mella, 2001). As a consequence of the subduction system along the western margin of South America, the Patagonian Batholith magmatic arc was developed (Stern and Stroup, 1982; Suárez et al., 1985; Bruce et al., 1991). The PB record volcanic activity associated with subduction since 165 Ma, with a pick of activity between 110 to 90 My (Hervé, 2005; Hervé et al., 2007; González-Guillot, 2016). The compressional regime caused intense deformation and metamorphism in both the basement and the Mesozoic sedimentary cover (Nelson et al., 1980; Dalziel and Brown, 1989; Cunningham, 1995), constituting three major tectonic elements: a magmatic arc, a complex fold and thrust belt, and a foreland basin by flexural loading (Mella, 2001) over the entire Patagonian region. The development of the Austral-Magallanes foreland basin is related to the uplift of the Southernmost Andes, along with tectonic stacking of material derived from Rocas Verdes Basin and the basement domain (Dott et al., 1977; Biddle et al., 1986; Wilson, 1991; Calderón et al., 2007; Gombosi et al., 2009; Barbeau et al., 2009).
Four foreland phases have been recognized during the foreland stage, based on seismic information and surface data, where depocenters migrated to the east in the southern Patagonian Andes (Mpodozis et al., 2011; Gallardo, 2014) and towards the north and east in Tierra del Fuego (Álvarez-Marrón et al., 1993; Kraemer, 2003; Ghiglione and Ramos, 2005; Rojas and Mpodozis, 2006; Klepeis et al., 2010). These Foreland stages, broadly described by Mpodozis et al. (2011), from oldest to the youngest are named as follows (Figs. 3 and 4; Foreland I (Coniacian (?) -Maastrichtian), Foreland II (early-middle Paleocene –middle Eocene), Foreland III (early-middle Eocene - Oligocene) and Foreland IV (early Miocene- Pliocene). Successive foreland discordances coalesce towards the external depocenter and depositional bulge, associated to developmental stages of the foreland basin (Fig. 4; Mpodozis et al., 2011; Gallardo, 2014).


Figure 4. a)
General regional seismic configuration of the Austral-Magallanes Basin. The regional seismic line and the interpreted line shown in b) illustrate the geometric wedge-shape of the early Foreland Stage strata onto previous sag-thermal deposits. TWT: reflection transit time in seconds. From Gallardo (2014), modified after Mella et al. (2010). See location in Fig. 1 or 7. Abbreviations: FU: foreland unconformity; G7: Mesozoic - Cenozoic limit.

STRATIGRAPHY AND DEPOCENTER

Paleozoic-Jurassic sequences
Deformed rocks develop on the crystalline substratum in the Basement thick-skinned domain to the south, which comprises ophiolitic ocean floor, Jurassic volcanic rocks and Cretaceous infill from the Rocas Verdes basin, the Patagonian Batholith, and the Darwin Cordillera Paleozoic metamorphic complex (Calderón et al., 2016).
The Patagonian Batholith (PB) comprises a large volume of Late Jurassic to Neogene subduction-related plutonic rocks emplazed along the Pacific margin between 40° and 56°SL (Suárez, 1978; Stern and Stroup, 1982; Hervé et al., 1984; Bruce et al., 1991; Hervé et al., 2007). The PB presents trench-side arc and rear-arc suites relative to the paleo-trench, with a complex time distribution (González- Guillot, 2016). Relicts of the Rocas Verdes basin remains including its oceanic mafic floor (Bruhn et al., 1978; Stern, 1980; Dalziel, 1981; Biddle et al., 1986; Grunow, 1993; Mukasa and Dalziel, 1996) are interspersed within the Patagonian Batholith in the basement domain.
The Darwin Cordillera Metamorphic Complex (DCMC) extends between Canal Beagle and Seno Almirantazgo (Fig. 5) (Nelson et al., 1980; Dalziel and Brown, 1989; Cunningham, 1995), uplifted ~1 km higher than the surrounding mountains (Klepeis, 1994a, b; Klepeis et al., 2010). The DCMC is thrusted to the north by the Glacial Marinelli fault over Jurassic rocks from Tobífera/Lemaire Formations (Rojas and Mpodozis, 2006). It is characterized by metasedimentary and metavolcanic rocks (Kohn et al., 1995) from a Paleozoic to early Mesozoic suite of shales, pelitic schists, amphibolites and orthogneisses (Nelson et al., 1980; Dalziel and Brown, 1989). Kohn et al. (1995) describes the metamorphism in zones of biotite, staurolite, kyanite and sillimanite. Several stages of deformation are recognized for the DCMC, being the oldest between ~125-80 My (Hervé et al., 1984; Cunningham, 1995; Kohn et al., 1995), responsible of metamorphism of amphibolite facies (Kohn et al., 1993). Afterwards, a brittle-ductile transtensional regime is identified between ~68-50 My, and a brittle regime of normal faulting since ~50 My (Cunningham, 1995; Kohn et al., 1995), that are related to advances of the orogenic front (Ghiglione and Ramos, 2005).


Figure 5.
Map of the fold and thrust belt (FTB) in Magallanes and Tierra del Fuego, showing the sedimentary units that are part of the pre-foreland units and filling of the foreland basin. Abbreviations: MFFZ: Magallanes-Fagnano Fault Zone; CBFZ: Canal Beagle Fault Zone; DCMC: Darwin Cordillera Metamorphic Complex. Modified from: Céspedes, 1957; SERNAGEOMIN, 2003; Mpodozis and Rojas, 2006; Rojas and Mpodozis, 2006; Olivero and Malumián, 2008; Betka et al., 2016; Velásquez, 2016; Sáez, 2017; Pinto et al., 2018.

The Jurassic extensional event is registered by outcrops of Lemaire Formation with NW-SE to W-E orientation south of Fagnano Lake (Kraemer, 2003; Mpodozis and Rojas, 2006) and in Beagle Channel towards the southeast (Caminos et al., 1981; Olivero and Martinioni, 2001; Olivero and Malumián, 2008). In Chile, the Jurassic is represented by the Tobífera Formation that includes mostly volcanic and volcaniclastic rocks (Fig. 3) (Wilson, 1991; Hanson and Wilson, 1991).
The Late Jurassic-Early Cretaceous Yaghán Formation (Bruhn et al.,1978; Stern, 1980; Suárez et al., 1985; Biddle et al., 1986) rest over the Tortuga ophiolitic complex south of the Beagle Channel (Fig. 3) (Kranck, 1932; Suárez and Pettigrew, 1976; Suárez et al., 1985) and overlies in unconformity over the Middle Jurassic in Tierra del Fuego (Figs. 3 and 5) (Dott et al., 1977; Caminos et al., 1981; Olivero and Malumián, 2008). This unit consists of fine-to-coarse grained facies and volcaniclastic rocks, affected by greenschist metamorphic facies and intense deformation in Navarino Island (Hervé et al., 1984; Suárez et al., 1985). The Yaghán Formation grade laterally to the south to the deposits of arc of the Hardy Formation (Figs. 3 and 5) (Suárez and Pettigrew, 1976; Suárez et al., 1985; Miller et al., 1994), which corresponds to volcaniclastic rocks interbedded with rhyolites and basaltic lavas (González-Guillot, 2016), and includes levels of recycled conglomerates (Tekenika Beds; Dott et al., 1977; Winn and Dott, 1979) (Fig. 3).
In the central strip of Tierra del Fuego the Early Cretaceous is represented by the Beauvoir Formation (Fig. 3) (Olivero and Martinioni, 2001; Olivero and Malumián, 2008), which corresponds to dark slates and grays tuff in an external platform environment that deepens to the south (Olivero and Malumián, 2008). These units are represented to the north of Seno Almirantazgo by the Río Jackson Formation (Álvarez-Marrón et al., 1993) overlain by deposits of shallow-marine environments and distal volcanic rocks of the Vicuña and La Paciencia formations (Fig. 3) (Barwick et al., 1951; Álvarez-Marrón et al.,1993).

LATE CRETACEOUS-CENOZOIC STRATIGRAPHY OF THE FORELAND STAGE

Foreland I Units (Coniacian (?) -Maastrichtian)
The onset of the foreland stage deposits is marked by a regional angular unconformity and erosional truncation over the underlying Cretaceous sediments of the sag-thermal stage (Figs. 2 and 3). This unconformity define an onlap surface towards the east and hence the foreland I units thins in that direction (Gallardo, 2014).
The deposits of foreland I are composed in Última Esperanza province by slope fans and basin-floor deposits migrating from the north-northwest since 101±1.1 My (Fosdick et al., 2011). These successions are represented by Punta Barrosa and Cerro Toro formations, and Lago Sofía Conglomerates (Katz, 1963; Wilson, 1991; Sohn et al., 2002; Fildani et al., 2003; Choe et al., 2004; Romans et al., 2009) and shallow marine systems of the Mata Amarilla Formation in Santa Cruz province (Fig. 3) (Varela et al., 2012). In subsurface of Tierra del Fuego, the wedge of foreland I forms a wedge that wedge that thickens slightly to the south, represented by the Lutitas Arenosas Formation (Fig. 3) (González, 1965; Natland et al., 1974).
The basal stage of the foreland basin in Tierra del Fuego is characterized by subsidence due to initial tectonic loading, which conditioned the deposits of axial and perpendicular turbidites and source of detritus into the basin from the erosion of Mesozoic deposits (Mella, 2001; Mpodozis et al., 2011). These turbiditic facies are represented in Tierra del Fuego (Lynch and Blanco lakes) by the Cerro Matrero Formation from the Coniacian-Campanian (Fig. 3) coming from the southwest (Rojas, 1990; Álvarez-Marrón et al., 1993). Northwards, the Río García Formation (Fig. 3) is compose by fine-grained deposits (Rojas, 1990; Álvarez-Marrón et al., 1993) interpreted as developed in outer shelfal and shallower setting than the Cerro Matrero Formation.
While during the Turonian to Campanian deep-water facies were deposited in western Tierra del Fuego, towards the east fine-grained facies from the Buen Suceso strata were accumulate in an outer shelfal and slope settings (Olivero and Medina, 2001; Olivero and Malumián, 2008). The Buen Suceso strata are cover by upper Campanian deep-water facies with conglomerates, turbiditic sandstone and mudstones of the Bahía Thetis Formation (Figs. 3 and 5) representing deep-water channels levee of the first Andean exhumation (Olivero et al., 2003; Olivero and Malumián, 2008).
The transition to the Foreland II stage is recorded in sandy and fine-grained facies from the Cerro Cuchilla Formation prograding northwards (Fig. 3: Rojas, 1990; Álvarez-Marrón et al., 1993). These rocks represent shallow marine deposits that overlie the mudstones of the Río García Formation. In the Atlantic shore, this transition of the Maastrichtian- Danian is identified as the Policarpo Formation (Fig. 3) (Olivero et al., 2003; Olivero and Malumián, 2008; Torres-Carbonell et al., 2008), characterized by dark gray sandy mudstones and silty sandstones, and tuffs. These rocks rest in unconformity over the Bahía Tethys Formation, in an outer shelf and/or slope depositional setting (Olivero and Malumián, 2008).

Foreland II Units (early-middle Paleocene- middle Eocene)
The base of the foreland II corresponds to a regional angular unconformity that represents an onlap surface towards the east and north of the basin. Consist in a transgressive asymmetric wedge that increases its thickness towards the south and west (Fig. 4). In the early Paleocene a northward migration of the orogenic front is registered by an angular unconformity within Paleocene successions (Prieto and Moraga, 1990; Ghiglione and Ramos, 2005), and towards the east in Magallanes and Última Esperanza province (Hervé et al., 2004; Fosdick et al., 2011). The thrust advanced of the orogenic front in Tierra del Fuego was probably ensuing from the rapid uplift and cooling of Darwin Cordillera at ~65 My (Kohn et al., 1995; Barbeau et al., 2009).
The units for this period in the Atlantic shore and Mitre Peninsula are described as conglomerates and coarse-grained sandstones of the late Paleocene from the Tres Amigos Formation (Fig. 5) (Olivero et al., 2002; Olivero and Malumián, 2008; Torres- Carbonell et al., 2008). This formation rest in angular unconformity over the Policarpo Formation (Fig. 3) (Ghiglione and Ramos, 2005; Olivero and Malumián, 2008), correlated with the conglomerates of Sierra de Apen in the northern shore of Fagnano Lake (Martinioni et al., 1999), probably representing a submarine fan-delta system (Olivero and Malumián, 2008). The foreland basin system includes a wedge top in Sierra de Apen and Península Mitre (Ghiglione and Ramos, 2005), and a foredeep of the Paleocene-early Eocene (Olivero and Martinioni, 2001).
Meanwhile, in the Paleocene foredeep towards the west of Tierra del Fuego (Vicuña area in Chile), outcrops in the front of the external fold-and-thrust belt deposits of fine-grained sandstones, siltstones and mudstone of the Chorrillo Chico Formation (Figs. 3 and 5) (Thomas, 1949a; Álvarez-Marrón et al., 1993) and mudstone and siltstones of the San Jorge Formation (Fig. 3) (Von Goetsche and Huca, 1953) are deposited over the Upper Cretaceous sediments. Recently, Pinto et al.,(2018) using the U-Pb method dated detrital zircons from the base of Chorrillo Chico Formation yield an early-to-middle Paleocene age, and identifies a depositional hiatus between the early Selandian to Thanetian in the Paleocene secessions (Fig. 3).
Facies of the middle Paleocene to the early Eocene, are described in the Río Claro Group: Cabo Leticia, La Barca, Punta Noguera; Punta Torcida and Cerro Ruperto formations, well exposed along the Atlantic shore and rest in angular unconformity over the Policarpo Formation (Figs. 3 and 5) (Malumián and Caramés, 2002; Olivero et al., 2002; Ghiglione and Ramos, 2005; Olivero and Malumián, 2008; Torres- Carbonell et al., 2009). The succession of the Río Claro Group represents a regressive sequence with relatively deep-water turbidite systems at the base and shallower shelfal deposits at the Cerro Ruperto Formation (Olivero and Malumián, 2008).
In the middle Eocene, a new phase of deformation was develop in Tierra del Fuego. Probably, this orogenic front migration towards the north by multiples unconformities produced the uplift of the Fueguian Andes (Basement domain) (Ghiglione et al., 2002; Olivero et al., 2002; Ghiglione and Ramos, 2005). Towards the west in Chile, over the San Jorge Formation were deposited the Agua Fresca and Tres Brazos formations in the late Eocene (Fig. 3) (Decat and Pomeyrol, 1931; Prieto and Moraga, 1990; Pinto et al., 2018) compose by siltstones and mudstone in the base and glauconitic sandstones with interbedded limestone at the top. In subsurface, this succession correspond to fine-grained sandstones, siltstones and mudstone of the Glauconitic Zone Formation (Hauser, 1964; Biddle et al., 1986).In the foredeep of Tierra del Fuego, these formation grades laterally to the southwest to the Ballena Formation (Fig. 3) (Barwick et al., 1951; Prieto and Moraga, 1990).
In the north part of the Fagnano area this succession is described as sandstones and siltstones with conglomerates at the top, interpreted as channels levee of a deltaic system that advanced northward (Rojas, 1990). Outcrops of these Eocene successions are exposed in the Campo del Medio Cape and Punta Gruesa, in the Despedida Group (Leticia and Cerro Colorado formations) (Figs. 3 and 6) (Furque and Camacho, 1949; Olivero and Malumián, 1999; Ghiglione, 2003; Ghiglione and Ramos, 2005; Torres- Carbonell et al., 2009). Thus, these units deposited between the middle to-late Eocene in Tierra del Fuego represent internal progressive migration toward the north and syntectonic unconformities developed in the front of the fold-and-thrust belt (Prieto and Moraga, 1990; Ghiglione et al., 2002). At the south of the Despedida Group, in the Atlantic shore (Leticia Cape in Mitre Peninsula), rocks of the early to-middle Eocene are exposed in the Río Bueno Formation (Fig. 3) (Furque and Camacho, 1949). Río Bueno Formation are composed by grainstones, bioturbated marls, and micrites (Malumián and Olivero, 1998; Olivero et al., 2002; Olivero and Malumián, 2008). This units were deposited in shallow shelf (Olivero and Malumián, 2008), in angular unconformity over the Río Claro Group.


Figure 6.
Geology map and structural section of the Atlantic shore of Tierra del Fuego between Cabo Campo del Medio and Punta Gruesa, showing stratigraphic and structural relations. Modified from Ghiglione and Ramos (2005). For map location see Fig. 7.

Finally, at the top of the foreland II, Gombosi et al., (2009) recognized a rapid cooling and exhumation caused by shortening and rock-uplift of the Fueguian Andes between the middle and late Eocene (~48 to 34 Ma).

Foreland III Units (early-middle Eocene -Oligocene)
The middle Eocene progradational marine systems are established at north-northeast direction from the southern depocenter in the basin (Malumián, 2002; Rojas y Mpodozis, 2006; Fosdick et al., 2011; Gallardo, 2014; Sáez, 2017). This succession form an asymmetric sedimentary wedge-shape widely distributed across the basin, which is thinning towards the east and the north (Gallardo, 2014), associated with thrust advanced and topographic growth of the Fueguian fold-and-thrust belt (eg. Mercedes fault).
These successions are accumulated towards north and east of the front of the fold-and-thrust belt, and are formed by marine shelf sediments of the basal Bahía Inutil Group in Tierra del Fuego (Camerón and Boquerón formations; Barwick, 1955; Céspedes, 1957) and Leña Dura Formation in Magallanes (Fig. 3) (Thomas, 1949a; Barwick, 1955). The depositional age for this basal unit, based on a biostratigraphic study of a nannofossil assemblage (González, 1965; Cañón and Ernst, 1975) is late Eocene to Oligocene. The western portion of these progradational foreland system during the middle-late Eocene was associated with shelf sediments of the Loreto Formation (Keidel and Hemmer, 1931; Otero et al., 2012; Gallardo, 2014), while in the central-east part the distal facies of the upper Bahia Inutil Group were deposited (Fig. 3; Santa Cara Formation) (Gallardo, 2014; Sáez, 2017). In subsurface, northeast-directed prograding sandstone of the Areniscas Arcillosas Formation are deposited in the Oligocene in Tierra del Fuego (Fig. 3) (Mordojovich, 1951; Céspedes, 1957; González, 1965; Cañon and Ernst, 1975). Similar progradational stacking pattern is recognized by a clastic-wedge that advanced from the west between late Oligocene to Miocene in the Malvinas basin (Galeazzi, 1998).
Towards the east, in the Atlantic shore, rocks of this foreland stage are exposed in the front part of the Fueguian fold and thrust belt, named Cabo Domingo Group (Fig. 3: Codignotto and Malumián, 1981; Olivero and Martinioni, 2001; Olivero and Malumián, 2008). The basal part of the Cabo Domingo Group is represented by the Desdemona Formation (Figs. 3 and 6) (Olivero et al., 1999; Olivero and Malumián, 2008) and consists of folded conglomerates, sandstones and mudstones, interpreted as deep-marine depositional system. This basal unit rest in unconformity over the Cabo Domingo Group, and represents the final stages of the compression and deformation in the fold-and-thrust belt in the Fueguian Andes (Malumián and Olivero, 2005; Olivero and Malumián, 2008). In the same way, to the southeast, the Puesto San Jose Formation (Oligocene) is characterized by a succession of mudstones with interbedded sandstones (Torres-Carbonell et al., 2009). Thus, during the early Oligocene the foredeep was filled with deep-marine mudstones and sandstones (Olivero and Malumián, 2008).

Foreland IV Units (early Miocene - Pliocene)
In this stage the sedimentary deposits presents geometry with less wedge-shape than the underlying foreland stages. Moreover, it shows a relatively less shortening and minimum regional slopes (Thomson et al., 2001; Fosdick et al., 2011). The associated deposits are exposed in the central part of Tierra del Fuego and correspond to the Miocene Patagonian Atlantic transgression, which flooded over the eastward margin of South America (Malumián et al., 1999; Cuitiño et al., 2012). These successions of the early-middle Miocene are dominantly mudstones, siltstones, and sandstones interbedded with coal levels and limestone of shallow-marine environments, that in Tierra del Fuego in Chile are represented by the Brush Lake and Filaret formations (Figs. 3 and 5) (Céspedes and Cortés, 1956; Malumián et al., 2013; Malumián and Nañez, 2011). To the westward, these units evolved contemporaneously with deltaic and fluvial systems of the El Salto Formation composed by sandstone, conglomerates and interbedded with siltstones (Fig. 3) (González, 1965; Mella, 2001).
The upper part of the Cabo Domingo Group is exposed in the Atlantic shore in rocks of the middle-late Miocene (Fig. 3; Castillo and Carmen Silva formations) (Codignotto and Malumián, 1981; Olivero and Malumián, 2008), characterized by shallow marine and deltaic mudstones to fluvial deposits. Towards the southeast, the Malengueña Formation is composed by a succession of conglomerates and sandstones of the late Oligocene-early Miocene in age (Torres-Carbonell et al., 2009). Thus, during the middle-to-late Miocene the filling in this foreland stage indicating a change from deep-marine to dominantly shallow marine, deltaic system and fluvial deposits (Olivero and Malumián, 2008).
In the westward, fluvial sediments pass laterally into volcanic deposits in Santa Cruz, Magallanes and Tierra del Fuego provinces (Fig. 3). The Palomares Formation corresponds to volcanic and volcaniclastic successions of continental environments that prograding to the eastward over the fluvial and deltaic facies (Cuitiño et al., 2012; Velásquez, 2016), whose age has been assigned to Burdigalian (Fosdick et al., 2011; Bostelmann et al., 2013; Velásquez, 2016).

STRUCTURAL DOMAINS

The Andes of Tierra del Fuego can be divided in three main structural domains differentiated by their stratigraphy and structural style (Kraemer, 2003; Álvarez-Marrón et al., 1993; Mpodozis et al., 2011), that can be followed offshore in the underwater structural blocks along the North Scotia ridge (Ghiglione et al., 2010): (i) a Basement thick-skinned domain to the west and south (ii) a Fold and Thrust Belt (FTB) Domain (internal and external) (Fig. 7). The boundary between the Basement domain and the thin-skinned fold-and-thrust belt is the basement thrust front (Kraemer, 2003; Ghiglione et al., 2010). The Foreland Domain corresponds to the scarcely deformed depocenter from the Austral-Magallanes basin north from the frontal thrusts (Mpodozis et al., 2011; Gallardo, 2014).


Figure 7.
Map of location of seismic lines in Tierra del Fuego province described in the text. Abbreviations: MFFZ: Magallanes- Fagnano Fault Zone; FTB: Fold-and-thrust Belt.

The basement domain is controlled by basement faults and high amplitude folds oriented northeast, and out-of sequence structures, such as the Glacial Marinelli fault (Kraemer, 2003; Rojas and Mpodozis, 2006). The sedimentary filling affected by the FTB in Tierra del Fuego involves Jurassic to Mesozoic rocks, units that are thrusted northward through a series of thrust sheet that producing uplift and erosion of the sediments deposited in the foredeep (Álvarez-Marrón et al., 1993; Kraemer, 2003; Rojas and Mpodozis, 2006; Klepeis et al., 2010; Mpodozis et al., 2011).
The FTB domain can subdivided into a thick-skinned internal domain and a thin-skinned external domain (Figs. 8 and 9) (Álvarez-Marrón et al., 1993; Klepeis and Austin, 1997; Kraemer, 2003; Rojas and Mpodozis, 2006; Ghiglione et al., 2010; Klepeis et al., 2010). Finally, the Foreland domain corresponds to the scarcely deformed Mesozoic to Cenozoic foreland depocenter (Álvarez-Marrón et al. 1993; Mpodozis et al., 2011). In general, the orientation of the developed structures in different domains is parallel to the orientation of the orogenic belt.


Figure 8.
Structural sections through the Tierra del Fuego in Chile. a) Structural section interpreted in seismic line j-5009 and surface geology of ENAP, and b) Structural section interpreted in seismic line J-5001 and surface geology of Klepeis (1994b) and ENAP.FTB: Fold-and-thrust belt. Modified from Rojas and Mpodozis (2006). For location, see Fig. 7.


Figure 9. a)
Structural cross-section in the Malvinas basin from Ghiglione et al. (2010). Fold-and-thrust belt modified from Tassone et al. (2008), foreland basin from Galeazzi (1998), b) Regional cross-section showing the Andean tectonics domain in the Austral-Magallanes basin. Basement domain is after Cunningham (1995) and Kraemer (2003) fold and thrust belt and foreland domain is modified From Kraemer (2003). For location see Fig. 1.

The Fueguian Andes extends towards the east in the North Scotia Ridge and the north limit of the Scotia plate. North of this area, the Malvinas Basin is developed, separated from the Austral-Magallanes Basin by the Alto Río Chico Dungeness. The Malvinas basin is filling principally by Cenozoic synorogenic wedge (Galeazzi, 1998). In the Malvinas Basin, it is possible to identify a similar structural style with development of structural domains comparable in Tierra del Fuego. Galeazzi (1998) and Tassone et al. (2008), describes in detail the Malvinas Basin, identified the evolutionary stages that cause it and determine its development (Fig. 9; rifting, rift-sag transition, sag-foredeep transition, and foredeep) considering the Foreland Domain and the thrust front). From Malvinas Basin to the south, Fish (2005) describes a fold-and-thrust belt domain verging northward, that affects rocks at the Tertiary sediment filling, and a Foreland domain with a southward slope, similar to what took place in Tierra del Fuego (Fig. 10).


Figure 10.
Structural section to south of the Malvinas Basin, showing Fold-and-thrust domain to the south and Foreland Domain to the north. TWT: reflection transit time in seconds. Modified from Fish (2005).

Basement Domain
The Basement Domain in Tierra del Fuego extends around from the Magallanes-Fagnano fault zone at the north to Cape Horn at the south. In Tierra del Fuego, comprising the Darwin Cordillera, Rocas Verdes basin, the Patagonian Batholith, and Jurassic to Mesozoic rocks and is bounded by the Glacial Marinelli basement thrust to the north. The Basement Domain is affected by a series of strike-slip faults active during the Cretaceous such as the Beagle Channel fault zone (Cunningham, 1995) and secondary faults related to the Neogene Magallanes- Fagnano fault zone (Yehuin and Tierra Mayor faults; Diraison et al., 1997; Rosello, 2004; Lozano et al., 2018). Mpodozis and Rojas (2006) estimated the displacement of the Yehuin fault in ~27 km to the south, NW-SE direction (Fig. 5), and active during the late Eocene-early Oligocene (Rosello, 2004).
The Basement Domain is made-up by northeast verging thrust sheets and dip to the south (Álvarez- Marrón et al., 1993; Kraemer, 2003; Rojas and Mpodozis, 2006). At the south extreme, affects rocks of the Paleozoic Basement, discontinuous ophiolites derived from the sea floor of Rocas Verdes basin (Tortuga Formation) and rocks of the Tobífera/Lemaire Formation, while towards the north comprises rocks of the Cretaceous thermal subsidence stage (Klepeis et al., 2010).
This domain is characterized by intense compressive deformation, including areas with ductile deformation and rocks of high-grade metamorphism that represent the Darwin Cordillera complex (Mpodozis and Rojas, 2006; Rojas and Mpodozis, 2006). The dominant tectonic style is thick-skinned (Rojas and Mpodozis, 2006). To the western sector, a structure out-of sequence known as Glacial Marinelli fault was produced, uplifting and involved polyphase deformation from the Darwin Cordillera metamorphic complex over Jurassic volcanic rocks of the Tobífera/Lemaire Formation (Rojas and Mpodozis, 2006). This thrust fault of low angle and north-northeast verging, extends for over 120 km along the dip-direction (represent the Basement Thrust front; Klepeis, 1994b).
Towards the north, this thrust fault is connected to a decollement level identified as Dp, originating a large hanging wall anticline denominated Cerro Verde Anticline (Fig. 8; Klepeis, 1994a,b; Kraemer, 2003; Rojas and Mpodozis, 2006). This large anticline located at the south of Fagnano Lake (Klepeis, 1994a.b; Kraemer, 2003), extends for ~100 km to the west of Sierra Valdivieso, with NW-SE orientation.
This anticline is formed by volcanites from Tobífera/ Lemaire Formation, which are underlain by Lower Cretaceous rocks from Río Jackson and La Paciencia formations (Rojas and Mpodozis, 2006). Kraemer (2003) indicates this anticline shows inverse faulting at its north flank, and it might have been formed during the Eocene as an rooted basement anticline, and transferred deformation and shortening to sequences of the internal FTB domain of the Late Cretaceous (Fig. 8b). Rojas and Mpodozis (2006) recognize a decollement level located on the base of the Cretaceous sequence over Jurassic volcanites for the innermost zone of the Basement Domain near of the Brooks Fiord, south of the Seno Almirantazgo. Above the decollement level a basal duplex verging to the north is developed, affecting Lower Cretaceous rocks (Río Jackson Formation), which are strongly folded and imbricate. The fault at the upper part of the duplex transferred shortening towards siltstones and turbidites from the Late Cretaceous (La Paciencia and Cerro Matrero formations), conforming the basal thrust of a major imbricate system that includes thrust sheets up to ~5 km thickness. The same decollement level is recognized by Álvarez-Marrón et al. (1993) at the top of Tobífera Formation in the Vicuña area, identifying it as decollement surface D3, and by Kraemer (2003) immediately to the south of Fagnano fault system, bounded Late Jurassic and Lower Cretaceous rocks. According to Rojas and Mpodozis (2006), the oldest deformation stage in the FPC on Tierra del Fuego is a result of the decollement of the sedimentary Cretaceous sequence over Jurassic volcanites, probably between the Paleocene and Eocene.
The advancing of the tectonic wedge towards the foreland area over the cover previously deformed might have generated the reactivation out-of sequence of some of the preexistent thrust fault (Fig. 8; Río Paralelo fault). At the Vicuña area it is possible to identify rocks from the Early and Late Cretaceous thrusted over Eocene-Oligocene sediments of the Cenozoic foredeep basin, showing the migration of the front of FTB limited by the Vicuña fault at the north (Fig. 8; Rojas and Mpodozis 2006). Thickness
difference observed between Cretaceous strata of the hanging wall (>4,000 m) compared to those of the footwall suggest that the Vicuña fault might have formed from a discontinuity or palaeogeographic break in the Cretaceous platform (Álvarez-Marrón et al., 1993; Rojas and Mpodozis, 2006).

Internal Fold-and-Thrust Belt Domain
The internal domain of deformation at the FTB in Tierra del Fuego expands approximately from Monte Hope and Magallanes-Fagnano system fault on the south, to the Vicuña area on the north through Vicuña fault that separates it from the Foreland Domain. Develops an orientation NW-SE, with folding and imbrications forming tight folds anticline and synclines whose intensity of deformation decreases from west to east, deforming Jurassic to Eocene-Oligocene rocks (Álvarez-Marrón et al. 1993; Kraemer, 2003; Rojas and Mpodozis, 2006). In the same way as it occurs in the basement domain, the internal domain of the FTB is affected by Yehuin fault (Fig. 5). In the internal domain of the FTB in Tierra del Fuego, described as thin-skinned tectonic style (Klepeis and Austin, 1997; Kraemer, 2003; Mpodozis and Rojas, 2006), a series of sheets verging to the north forming an imbricate fan system (Fig. 8) Álvarez-Marrón et al., 1993; Kraemer, 2003; Rojas and Mpodozis, 2006; Klepeis et al., 2010).
At the area of Vicuña (Lynch and Blanco lakes) three major structures north-northeast verging thrust sheets that configures the fold-and-thrust belt: Vicuña, Bahía Bell and Colo-Colo faults, from north to south, respectively (Figs. 5 and 8) (Álvarez-Marrón et al., 1993; Rojas and Mpodozis, 2006). Meanwhile, Rojas and Mpodozis (2006) describe in the south of Cerro Colo-Colo fault the denominated Río Paralelo fault (out-of sequence thrust), result of the displacement of the preexistent thrust towards the north (Fig. 8). The northernmost of this thrusting, named Vicuña fault, uplifted Lower and Upper Cretaceous rocks (Río Jackson and Vicuña formations) over Eocene rocks (Ballena Formation) (Figs. 5 and 8). The Bahía Bell fault, defined by Álvarez-Marrón et al. (1993), puts in contact Lower Cretaceous rocks (Río Jackson Formation) over deposits of the Upper Cretaceous
(Río García Formation). Finally the Colo-Colo fault, the southernmost thrust of this system, puts in contact Lower Cretaceous turbiditic rocks (Cerro Matrero Formation) with shelfal deposits of the Upper Cretaceous (La Paciencia Formation), indicating a horizontal displacement of several kilometers (Figs. 5 and 8) (Rojas and Mpodozis, 2006).
On the other hand, Álvarez-Marrón et al. (1993), describe for the lower part of the external domain, to the ~5-6 km deep, duplex of gently slope at the south, affecting Cretaceous rocks near to the Jurassic-Cretaceous contact or decollement level D3 (Fig. 11). At the Chilean-Argentinean border in the north of Fagnano Lake, Lower Cretaceous rocks rest over Upper Cretaceous rocks along the Deseado fault (Klepeis, 1994a; Kraemer, 2003). For the internal domain of the FTB of Tierra del Fuego in Chile, the position of the Dp is variable. At the west of the FTB, the position of Dp remains at the base of the Cretaceous, rising gradually towards the west until positioning at the Lynch Lake in the late Cretaceous and in the Nariz Cape in the Maastrichian (Rojas and Mpodozis, 2006).


Figure 11.
Duplex thrusting Cretaceous rocks over decollement level D3 over contact Jurassic-Cretaceous. TWT: reflection transit time in seconds. Modified from Álvarez-Marrón et al. (1993).

External Fold-and-thrust Belt Domain
The external deformation domain is bounded at the south by the internal domain of FTB (limited by the Vicuña fault). North of the Vicuña fault (and in the Tierra del Fuego in Argentina), sequences of the Cretaceous shelfal and Cenozoic fill consists of large amplitude fold-and-thrust showing several levels of decollement overlapped that gently affected the foreland fill (Fig. 8, 12) (Robbiano et al., 1996; Kraemer, 2003; Rojas and Mpodozis, 2006; Menichetti et al., 2008). The deepest one of this thrust represents the continuity to the north of the basement thrust of the Jurassic-Cretaceous limit (Dp: Rojas and Mpodozis, 2006; or D3: Álvarez-Marrón et al., 1993), which is associated to duplex (Fig. 11; Álvarez-Marrón et al., 1993) and minor imbrications. The foreland tertiary successions is detached from the Cretaceous in a level of pressured pelitic rocks of the Eocene (basal deltaic sediments), which is rooted towards the south with Vicuña fault and the imbricate fan system of the internal domain (Fig. 13; Rojas and Mpodozis, 2006).


Figure 12.
Regional seismic line PR-1.a) uninterpreted and b) interpreted section through of Tierra del Fuego in Chile showing Rifting, Sag-thermal and Foreland stages. Note the wedge-shape and thinning of the successive foreland stage towards the foreland domain through the section. TWT: reflection transit time in seconds. For map location see Fig. 7.


Figure 13.
Detachment folding in Eocene deltaic sediments, external domain of the Fold-and-thrust Belt. TWT: reflection transit time in seconds, 2 seconds ≈ 4 km. For location see Fig. 7. Modified from Rojas and Mpodozis (2006).

This succession is deformed internally in a system of thrust sheets that pass laterally to the north to anticlines by detachment folding and whose horizontal shortening increases to the east (Rojas and Mpodozis, 2006). In the Atlantic shore these units are discussed by Ghiglione et al. (2002) and Ghiglione and Ramos (2005) in the Campo del Medio Cape and Punta Gruesa (Fig. 6). The structures are developed during the middle-early Eocene, characterized by development of detachment folding with limb rotation over a decollement level of pelitic rocks. The folded units, near to the Magallanes- Fagnano fault system, involves sedimentary rocks from the Eocene (Punta Torcida, Leticia formations) and are characterized to be dissected by high-angle thrust faults out-of sequence. During the Oligocene, the shortening resulted in the propagation of thrust faults and migration northward of the foreland basin system under transpressive conditions, associated probably, to the Magallanes-Fagnano fault system.

Foreland Domain
The foreland domain in Magallanes is extended from the north limit of the external domain. Currently, the foredeep is developing towards the east and the north of the orogenic front, and is not affected significantly by the compressive tectonic processes. It is a large region composed by Jurassic to Cenozoic rocks scarcely deformed, decreasing deformation from south to north towards the area called Platform. Regional slopes increase towards the west and south, at the areas where the influence of tectonic loading is higher due to flexure (Figs. 8, 9 and 12) (Mella, 2001; Mella et al., 2010; Mpodozis et al., 2011). Towards the west, at the platform area and far from the FTB domain, regional slopes decrease. In the foreland area, the fill consists in an assemblage of marine and non-marine deposits, and volcanic and volcaniclastic rocks that reaches up to ~8 km of sediment thickness (Fig. 1) (Biddle et al., 1986; Wilson, 1991). Through of seismic lines it is possible recognize parallel to sub-parallel seismic reflectors with gently slope to the south in Tierra del Fuego and towards the west (Álvarez-Marrón et al., 1993; Mella, 2001; Mpodozis et al., 2011; Gallardo, 2014). The foreland area registers processes linked to tectonic events that occur in the hinterland, causing migration of peripheral bulge with reactivation of normal faults (Moraga, 1996; Ghiglione et al., 2010) and transcurrent reactivation of extensional high-angle faults (Mpodozis et al., 2011).
The Paleozoic basement is divided into structural blocks limited by high-angle normal faults, defining half-grabens where the synrift volcaniclastic sediments are deposited (Moraga, 1996; Navarrete- Rodríguez, 2006). The sedimentary loading in turn originated extensional reactivation of Jurassic faults,
which in some cases affected the Cretaceous units, increasing even more the uplift of the folds generated at early stages (Mpodozis et al., 2011). Within of the Foreland III units (in Chile) of the Oligocene in age, it is possible to recognize in localized areas, characteristic configuration in progradation towards the basin and aggradation on the shelf, with development of turbidites fans and slope sequences (Dorado-Riquelme area; see Gallardo, 2014).

AMOUNT OF SHORTENING

The external FTB of Tierra del Fuego reveals a complex Mesozoic structural history, where the first stage of tectonic of thin-skinned is followed by thick-skinned stage that reactivates preexistent structures (Rojas and Mpodozis, 2006). Álvarez-Marrón et al.,(1993), by means of the palimpastic reconstruction of three structural sections in the external area of Vicuña estimates an amount of shortening between 57-60%, from east to west respectively, estimating ~30 km of shortening. In turn, Rojas and Mpodozis (2006) determine that the sum of shortening in the Glaciar Marinelli fault, the outcropping part of the basal duplex and the Cerro Colo-Colo and Vicuña faults reaches ~50 km at least. For the Darwin Cordillera metamorphic complex in the internal domain, the crustal shortening estimate is ~25 km (Nelson, 1982; Kohn et al., 1995), and Klepeis (1994b) suggest ~83 Km of shortening at north of the Glaciar Marinelli fault thrust. Meanwhile, Kraemer (2003) estimates the post-Jurassic cortical shortening of the Fueguian Andes between ~300 to ~600 km, with an increase in the shortening value north to south (~400 km during the middle-Cretaceous, ~40 km in the early-Cretaceous, ~50 km in the Paleogene and ~80 km in the Neogene). On the other hand, Klepeis et al. (2010), suggest a minimum of ∼50 km of horizontal shortening (∼70%) in cover rocks is accommodated between the Beagle Channel and Seno Almirantazgo.
In the easternmost part of the Tierra del Fuego in Argentina, Torres-Carbonell et al. (2011) estimated a minimum shortening of ~41.8 Km product of structures in the base of Cretaceous and within Paleocene rocks. Recently, Torres-Carbonell et al. (2017), in the southeastern tip of Tierra del Fuego recognize a minimum regional shortening in the Paleogene cover that increased from west to east, and vary between 16% and 43%.

SYNTHESIS AND DISCUSSION

The tectonic evolution of the Andes of Tierra del Fuego is related to the collapse close of a marginal basin (Rocas Verdes basin) during the Early Cretaceous (Dalziel et al., 1974; Stern, 1980; Dalziel, 1981; Biddle et al., 1986; Uliana et al., 1986; Calder et al., 2007). The first evolutionary stage is associated to a rifting phase affecting the whole southernmost part of the Patagonia, between the Late Jurassic and the Early Cretaceous, which is followed by a Foreland Basin stage, resulting from tectonic loading linked to the uplift of the Fueguian Andes during the Late Cretaceous (Katz, 1963; Wilson, 1991; Biddle et al., 1986).

Structural Domains
While in the Turonian to Campanian in Tierra del Fuego in Chile were deposited facies of deep basin, at the Argentinean sector fine-grained facies were deposited in an outer shelfal and slope settings, indicating an advance the progression of the deformation towards the east in the Late Cretaceous. Thus, a hiatus in the sedimentation of the Cretaceous foreland basin is registered in the Tierra del Fuego (Ghiglione et al., 2002; 2014), probably generated by the effects of the rapid uplift and cooling in the Darwin Cordillera at the ~65 My. (Kohn et al., 1995; Barbeau et al., 2009; Gombosi et al., 2009) as shown by the angular unconformity within early Paleocene units (Ghiglione and Ramos, 2005).
The subsequent erosion filled the wedge top in Sierra de Apen and Península Mitre (Olivero et al., 2002), and the foredeep of the Paleocene-early Eocene, contemporaneous with the shortening in the fold-and-thrust belt (Klepeis and Austin, 1997; Kraemer, 2003; Ghiglione and Ramos, 2005; Gombosi et al., 2009) and transpression along the Beagle Channel fault-zone (Cunningham, 1993; 1995). A new major phase in the deformation in the late-early Eocene to late Eocene in Tierra del Fuego is represented by the internal progressive migration towards the north and syntectonic unconformities developed in the front of the fold-and-thrust belt (Prieto and Moraga, 1990; Ghiglione et al., 2002). In the same, Gombosi et al., (2009) recognized a rapid cooling and exhumation caused by shortening and rock-uplift of the Fueguian Andes between the middle and late Eocene.
Subsequently, in the Oligocene the reactivation of detachment levels, the migration of the tectonic wedge to the Cenozoic sequence and the uplift of the Darwin Cordillera occurs (Rojas and Mpodozis, 2006). Post-compressive tectonic stage, between Antarctic Peninsula and the southernmost South America finished with the opening of the Drake Passage in the Neogene that affected the evolution of Cenozoic rocks in the Austral-Magallanes Basin during the Miocene.

Seismic geometry and Depocenter
Based on regional seismic data and well-log (Fig. 12; seismic line PR-1) it was possible to identify the evolutionary stages for the southernmost depocenter of the Austral-Magallanes basin in Tierra del Fuego. The rifting stages are established over a basement controlled by normal faulting of northwest-direction of Middle to Late Jurassic age. Figure 8 (PR-1) shows that the thickest thicknesses of the volcanic filled are located close to the main faults, and the top of the volcanic rocks is marked by a reflector of high-amplitude that represents a regional break-up unconformity.
In discordance to the rifting stage, a thick succession of sag-thermal stage is deposited in the Lower Cretaceous. These fine-grained successions represent a regional transgressive event deposited in platform environment that cover the volcanic and volcaniclastic rocks of the underling stage. The seismic reflectors show a tabular-shape with medium-to-high amplitude and cover entire the region, and are slightly thicker to the north.
The onset of foreland I stage is characterized in Última Esperanza in Chile by an asymmetric basin with deposition of thick turbiditic successions (Katz, 1963; Wilson, 1991; Sohn et al., 2002; Fildani et al., 2003; Choe et al., 2004; Romans et al., 2009) migrating from the north-northwest since 101±1.1 My (Fig. 3) (Fosdick et al., 2011). At north-edge of the basin, the turbiditic system is represented by the Punta Barrosa formation that is prolonged towards the south in the outcrop of the Latorre Formation in Magallanes (Castelli et al., 1992; McAtamney et al., 2011), and the turbiditic facies of Cerro Matrero Formation coming from the southwest in the Coniacian-Campanian (Rojas, 1990; Álvarez- Marrón et al., 1993). In subsurface of Tierra del Fuego, the Lutitas Arenosas Formation represent the first deposits of the foreland stages (González, 1965; Natland et al., 1974). Meanwhile, in the eastward of Tierra del Fuego, the Bahía Thetis Formation of the upper Campanian was deposited in deep-water channels environments (Olivero et al., 2003; Olivero and Malumián, 2008). Therefore, a diachronic age in the onset of the compressional stage is evidenced in the foreland basin, being youngest towards the south and east in Austral-Magallanes Basin (Fig. 3). The initial tectonic loading is accompanied as well by a pulse of rapid cooling and uplift between ~90-70 My (Nelson, 1982; Kohn et al., 1995; Cunningham, 1995).The seismic reflection in Tierra del Fuego shows that the foreland I have poor development with small thickness and tabular-shape in subsurface (Fig. 12). However, this geometry changes drastically to the west of the basin, where it takes a wedge-shape that thickens towards the foredeep zone (Fig. 4).
The foreland II is well-represented in subsurface of Tierra del Fuego. Its basal boundary corresponds to a regional angular unconformity over the Cretaceous successions, and represents an onlap surface towards the east and north. It is configured as a wedge-shape that drastically increases its thicknesses towards the south and west (Fig. 12). The base of foreland II corresponds to a regional hiatus that in Santa Cruz and Última Esperanza provinces span between the Paleocene and early-to-middle Eocene (Hervé et al., 2004), in Magallanes province is limited to early Paleocene (Fig. 3) (Pinto et al., 2018), and in Malvinas basin is restricted between late Maastrichian to early Eocene (Galeazzi, 1998). In the early Paleocene the southernmost region of the depocenter was affected by the uplift and cooling of Darwin Cordillera at ~65 My (Kohn et al., 1995; Barbeau et al., 2009), and as a result of this the orogenic thrust front advanced on Tierra del Fuego province in northward-direction unconformities (Prieto and Moraga, 1990; Ghiglione and Ramos 2005; Rojas and Mpodozis, 2006). Meanwhile, in the Última Esperanza and Magallanes provinces the migration of the orogenic front occurs in eastward-direction (Hervé et al., 2004; Fosdick et al., 2011; Mpodozis et al., 2011). Finally, in the middle-to late Eocene a new rapid cooling and exhumation affected the region (Gombosi et al., 2009), and orogenic front migration towards the north by multiples unconformities produced the uplift of the Fueguian Andes (Ghiglione et al., 2002; Olivero et al., 2002; Ghiglione and Ramos, 2005).
The foreland III is marked by progradational systems to north-northeast direction and a minimum rate of creation of accommodation space (Malumián, 2002; Fosdick et al., 2011; Gallardo, 2014; Sáez, 2017). Seismic imaging reflects a wedge-shape that increases its thicknesses towards the south and west (Fig. 12). In Tierra del Fuego province, in the middle Eocene to Oligocene units are uplift and eroded as a result of the orogenic growth of the Fueguian fold-and-thrust belt (Fig. 12), whereas in subsurface of Magallanes province the entire succession of foreland III is preserved as reflected in seismic data (Fig. 4). Evidence of this progradational stacking patterns are the oblique to sigmoid clinoforms in direction to the foredeep in the east since the middle-late Eocene, and supply sediments in the same direction (Gallardo, 2014; Sáez, 2017), and from the west in the late Oligocene to Miocene in the Malvinas basin (Galeazzi, 1998).
The wedge-top succession of the foreland IV is deposited over conditions of very low rate of flexural subsidence (Thomson et al., 2001; Fosdick et al., 2011). In this scenario, were deposited the successions of the Patagonian Atlantic transgression in the Miocene, coming from the east (Malumián et al., 1999; Cuitiño et al., 2012), in an environments shallow-marine, deltaic and fluvial system (Olivero and Malumián, 2008; Malumián and Nañez, 2011; Malumián et al., 2013). In a regional context, during the early Miocene a new phase of uplift of the Patagonian-Fueguian Andes is developed (Thomson et al., 2001; Blisniuk et al., 2006; Fosdick et al., 2011). In addition, in Magallanes and Tierra del Fuego provinces occurs the subduction of the Chilean ridge beneath South America between the ~19-17 Ma, which results in dynamic uplift of the western edge of South America (Gorring et al., 1997; Guillaume et al., 2009; Ghiglione et al., 2016).

CONCLUSIONS

On the basis of the compilation of numerous studies and internal reports of ENAP, it was possible to build a chronostratigraphic table for the southernmost depocenter of the Austral-Magallanes basin. The seismic imaging and well-log data are a useful tool to recognize the different of the evolutionary stages in a basin. Collected information from studies in the Malvinas Islands in the east, Tierra del Fuego and Magallanes in the west, allowed to identify the evolutionary stages of rifting, sag-thermal and foreland stages (I to IV).
The purpose of this contribution was to relate the deformation pulses of the orogenic growth stages whit the development of the associated depocenter in the basin from the Late Cretaceous. The basin of the Upper Cretaceous was established over a fine-grained successions from a sag-thermal phase of the Lower-to-middle Cretaceous in age, that cover a faulting rifting stage of the Upper-to-Middle Jurassic age. Seismically, the post-rift stage is recognized by reflectors that ascent their contact of formations towards the north and east. This configuration is increased in the foreland stages I to III, in conditions of deep-marine environments, to finally horizontalize the reflectors towards shallow-marine and deltaic sedimentation in the foreland stage IV.
As a future venture, it would be important to expand the seismic coverage and to identify the migration and orientation of the axis depocenter through time as the different pre-foreland evolutionary stages (rift and postrift stage) and foreland (stages I to IV). Additionally, it would be interesting to recognize the position and migration of the peripheral buldge, and its relation to the stages of growth of the Patagonian-Fueguian Andes.

Acknowledgments

The ENAP enterprise (National Oil Company of Chile) is thanked for supported the seismic line data and internal report presented here. We would like to thank to anonymous reviewers, and especially to the Dr. F. Poblete and LAJSBA editors for their comments. This is a contribution of the project R-305 of the Instituto de Estudios Andinos “Don Pablo Groeber”.

REFERENCES

1. Álvarez, P., S. Elgueta, C. Mpodozis, M. Briceño, H. Vieytes, J.P Radic and P.E. Mella, 2006. Proyecto Tranquilo-Otway. Informe Archivo Técnico ENAP, Santiago, 290 pp. (inédito).         [ Links ]

2. Álvarez-Marrón, J., K.R. McClay, S. Harambour, L. Rojas and J. Skarmeta, 1993. Geometry and evolution of the frontal part of the Magallanes foreland thrust and fold belt (Vicuna-Area), Tierra del Fuego, Southern Chile. American Association of Petroleum Geologist Bulletin 77:1904-1921.         [ Links ]

3. Barbeau, D.L., E.B. Olivero, N.L. Swanson-Hysell, K.M. Zahid, K.E. Murray and G.E. Gehrels, 2009. Detrital-zircon geochronology of the eastern Magallanes foreland basin: Implications for Eocene kinematics of the northern Scotia Arc and Drake Passage. Earth and Planetary Science Letters 20:23-45.         [ Links ]

4. Barker, P.F., 2001. Scotia Sea regional tectonic evolution: Implications for mantle flow and palaeocirculation. Earth Science Reviews 55:1-39.         [ Links ]

5. Bartoloni, A. and R.L. Larson, 2001. Pacific microplate and the Pangea supercontinent in the Early to Middle Jurassic. Geology 29 (8):735-738.         [ Links ]

6. Barwick, J., F. García and E. González, 1951. Geology of the Lago Blanco-Lago Chico-Lago Lynch área, Tierra del Fuego. Informe Archivo Técnico ENAP, Santiago, 51 pp. (inédito).         [ Links ]

7. Barwick, J., 1955. The surface stratigraphy of portions of Magallanes Province, Chile. Informe Archivo Técnico ENAP, Santiago, 122 pp. (inédito).         [ Links ]

8. Betka, P., K. Klepeis and S. Mosher, 2015. Along-strike variation in crustal shortening and kinematic evolution of the baseof a retroarc fold-and-thrust belt: Magallanes, Chile 53°S–54°S. Geological Society of America Bulletin 127(7/8):1108-1134.

9. Biddle, K.T., M.A. Uliana, R.M. Mitchum, M.G. Fitzgerald and R.C. Wright, 1986. The Stratigraphic and Structural Evolution of the Central and Eastern Magallanes Basin, Southern South America. In: Allen P.A. and P. Homewood (Eds), Foreland Basins. International Association of Sedimentologist, Special Publication 8:41-61.         [ Links ]

10. Blisniuk P.M., L.A. Stern, C.P. Chamberlain, P.K. Zeitler, V.A. Ramos, E.R. Sobel, M. Haschke, M.R. Strecker and F. Warkus, 2006. Links between mountain uplift, climate, and surface processes in the Southern Patagonian Andes. The Andes. Springer, Berlin, 429-440 pp.         [ Links ]

11. Bostelmann, J.E., J.P. Le Roux, A. Vasquez, N.M. Gutiérrez, J.L. Oyarzún, C. Carreño, T. Torres, R. Otero, A. Llanos, C.M. Fanning and F. Hervé, 2013. Burdigalian deposits of the Santa Cruz formation in the Sierra Baguales, Austral (Magallanes) basin: age, depositional environment and vertebrate fossils. Andean Geology40 (3):458-489.         [ Links ]

12. Bruce, R. M., E.P. Nelson, S.G. Weawer and D.R. Lux, 1991. Temporal and spatial variations in the Southern Patagonian Batholith; constrains on magmatic arc development. In R.S. Harmon and C.W. Rapela (Eds.), Andean magmatism and its tectonic setting. Geological Society of America, Special Paper 265:1-12.         [ Links ]

13. Bruhn, R.L., C.R. Stern and M.J. Wit, 1978. Field and geochemical data bearing on the development of a Mesozoic volcano-tectonic rift zone and back-arc basin in southernmost South America. Earth and Planetary Science Letters 41:32-46.         [ Links ]

14. Burns, K.L., M.J. Rickard, L. Belbin and F. Chamalaun, 1980. Further palaeomagnetic confirmation of the Magallanes Orocline. Tectonophysics 63:75-90.         [ Links ]

15. Calderón, M., A. Fildani, F. Hervé, C.M. Fanning, A. Weislogel and U. Cordani, 2007. Late Jurassic bimodal magmatism in the northern sea-floor remnant of the Rocas Verdes basin, southern Patagonian Andes. Journal of the Geological Society London 164:1011-1022.         [ Links ]

16. Calderón, M., F. Hervé, F. Fuentes., J.C. Fosdick, F. Sepúlveda and G. Galaz, 2016. Tectonic Evolution of Paleozoic and Mesozoic Andean Metamorphic Complexes and the Rocas Verdes Ophiolites in Southern Patagonia. In: Ghiglione M.C. (Ed), Geodynamic Evolution of the Southernmost Andes. Springer Earth System Sciences, 7-36 pp.         [ Links ]

17. Caminos, R., M.J. Haller, O. Lapido, A. Lizuain, R. Page and V.A. Ramos, 1981. Reconocimiento geológico de los Andes Fueguinos, Territorio Nacional de Tierra del Fuego. VIII Congreso Geológico Argentino Actas 3:759-786, Buenos Aires.         [ Links ]

18. Cañón, A. and M. Ernst, 1975. Cuadro de correlaciones estratigráficas de la Provincia de Magallanes. Informe Archivo Técnico ENAP, Santiago. (inédito).         [ Links ]

19. Castelli, J.C., R. Robertson and A. Harambour, 1992. Evaluación Geológica y Petrolera, bloques Ultima Esperanza Sur e Isla Riesco.Informe Archivo Técnico ENAP, Santiago, 59 pp. (inédito).         [ Links ]

20. Choe M.Y., Y.K. Sohn, H.R. Jo and Y. Kim, 2004. Sedimentary Facies and Evolution of the Cretaceous Deep-Sea Channel System in Magallanes Basin, Southern Chile, Ocean and Polar Research 26(3):385-400.         [ Links ]

21. Céspedes, S., 1957. Estudio Geológico de la zona noroeste de Bahía Inútil, Tierra del Fuego. . Informe Archivo Técnico ENAP, Santiago, 86 pp. (inédito).         [ Links ]

22. Céspedes, S. and E. Cortés, 1956.Levantamiento Geológico del área Filaret – Rio Chico. Informe Archivo Técnico ENAP, Santiago. (inédito).

23. Codignotto, J.O. and N. Malumián, 1981. Geología de la región al Norte del paralelo 54 S. de la Isla Grande de Tierra del Fuego. Revista de la Asociación Geológica Argentina 36:44-88.         [ Links ]

24. Cuitiño, J.I. and R.A. Scasso, 2010. Sedimentología y paleoambientes del Patagoniano y su transición a la Formación Santa Cruz al sur del Lago Argentino, Patagonia Austral. Revista de la Asociación Geológica Argentina 66 (3):406-417.         [ Links ]

25. Cuitiño, J.I., M.M. Pimentel, R. Ventura Santos and R.A. Scasso, 2012. High resolution isotopic ages for the early Miocene “Patagoniense” transgression in Southwest Patagonia: Stratigraphic implications. Journal of South American Earth Sciences (38):110-122.

26. Cuitiño, J.I., R. Ventura Santos, P.J. Alonso Muruaga and R.A, Scasso, 2015. Sr-stratigraphy and sedimentary evolution of early Miocene marine foreland deposits in the northern Austral (Magallanes) Basin, Argentina. Andean Geology42 (3):364-385         [ Links ]

27. Cunningham, W.D., 1993. Strike-slip faults in the southernmost Andes and the development of the Patagonian Orocline. Tectonics12:169-186.         [ Links ]

28. Cunningham, W.D., 1995. Orogenesis at the southern tip of the Americas: the structural evolution of the Cordillera Darwin metamorphic complex, southern Chile. Tectonophysics 244(4):197-229.         [ Links ]

29. Dalziel, I.W.D. and R.L. Brown, 1989. Tectonic denudation of the Cordillera Darwin metamorphic core complex, Tierra del Fuego, implications for cordilleran orogenesis. Geology 17:699-703.         [ Links ]

30. Dalziel, I.W.D., 1981. Backarc extension in the southern Andes: a review and critical reappraisal. Philosophical Transactions of the Royal Society of London (300):319-335.         [ Links ]

31. Dalziel, I.W.D., M.J. De Wit and K.F. Palmer, 1974. Fossil marginal basin in the southern Andes. Nature 250:291-294.         [ Links ]

32. Dalziel, I.W.D., R.H.Jr. Dott, R.D.Jr, Winn and R.L. Bruhn, 1975. Tectonic relations of South Georgia Island to the southernmost Andes. Geological Society of America Bulletin 86:1034-1040.         [ Links ]

33. Decat, J. and R. Pomeyrol, 1931. Informe Geológico sobre las posibilidades petrolíferas de la Región Magallánica (21- VII-1929). Boletín Minero, Sociedad Nacional de Minería, Santiago, año 43, 389:763-772.         [ Links ]

34. Diraison, M., P.R. Cobbold, D. Gapais and E.A. Rossello, 1997. Magellan Strait: part of a Neogene rift system. Geology 25:703- 706.         [ Links ]

35. Diraison, M., P.R. Cobbold, D. Gapais, E.A. Rossello and C. Le Corre, 2000. Cenozoic crustal thickening, wrenching and rifting in the foothills of the southernmost Andes. Tectonophysics 316:91-119.         [ Links ]

36. Dott, R. H. Jr, R.D. Winn, M.J. De Wit and R.L. Bruhn, 1977. Tectonic and sedimentary significance of Cretaceous Tekenika beds of Tierra del Fuego. Nature 266:620-622.         [ Links ]

37. Eagles, G., 2010. South Georgia and Gondwana’s Pacific margin: lost in translation? Journal of South American Earth Sciences30:65-70.

38. Eagles, G. and W. Jokat, 2014. Tectonic reconstructions for paleobathymetry in Drake Passage. Tectonophysics 611:28-50.         [ Links ]

39. Féraud, G., V. Alric, M. Fornari, H. Bertrand and M.J. Haller, 1999.39Ar/40Ar dating of the Jurassic volcanic province of Patagonia: migrating magmatism related to Gondwana break-up and subduction. Earth and Planetary Science Letters 172:83-96.         [ Links ]

40. Fildani, A., T.D. Cope, S.A. Graham and J.L. Wooden, 2003. Initiation of the Magallanes foreland basin: Timing of the southernmost Patagonian Andes orogeny revised by detrital zircon provenance analysis. Geology 31:1081-1084.         [ Links ]

41. Fish, P., 2005. Frontier South, East Falkland basins reveal important exploration potential. Oil and Gas Journal 103:34-40.         [ Links ]

42. Fosdick, J.C., B.W. Romans, A. Fildani, A. Bernhardt, M. Calderón and S.A. Graham, 2011. Kinematic evolution of the Patagonian retroarc fold-and-thrust belt and Magallanes foreland basin, Chile and Argentina, 51º30ʼS. Geological Society of America Bulletin 123:1679-1698.         [ Links ]

43. Fosdick, J.C., J.E. Bostelmann, J. Leonard, R. Ugalde, J.L. Oyarzun and M. Griffin, 2015.Timing and rates of foreland sedimentation-New detrital zircon U/Pb geochronology of the Cerro Dorotea, Río Turbio, and Río Guillermo formations, Magallanes basin. XIV Congreso Geológico Chileno, Resumen, 4 p.86, La Serena.         [ Links ]

44. Furque, G. and H.H. Camacho, 1949. El Cretácico superior de la costa Atlántica de Tierra del Fuego. Revista de la Asociación Geológica Argentina 4:263-297.         [ Links ]

45. Galeazzi, J.S., 1998. Structural and stratigraphic evolution of the Western Malvinas Basin, Argentina. American Association of Petroleum Geologist Bulletin 82:596-636.         [ Links ]

46. Gallardo, R.E., 2014. Seismic sequence stratigraphy of a foreland unit in the Magallanes-Austral Basin, Dorado Riquelme Block, Chile: Implications for deep-marine reservoirs. Latin American Journal of Sedimentology and Basin Analysis 21(1):49-64.         [ Links ]

47. Ghiglione, M.C., 2003. Estructura y evolución tectónica del Cretácico-Terciario de la costa Atlántica de Tierra del Fuego. Tesis Doctoral, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 150 pp. (inédito).         [ Links ]

48. Ghiglione, M.C. and E.O. Cristallini, 2007. Have the southernmost Andes been curved since Late Cretaceous times? An analog test for the Patagonian Orocline. Geology 35:13-16.         [ Links ]

49. Ghiglione, M.C. and V.A. Ramos, 2005. Chronology of deformation in the Southern-most Andes of Tierra del Fuego. Tectonophysics 405:25-46.         [ Links ]

50. Ghiglione, M.C., V.A. Ramos and E.O. Cristallini, 2002. Estructura y estratos de crecimiento en la faja plegada y corrida de los Andes fueguinos. Revista Geológica de Chile 29:17-41.         [ Links ]

51. Ghiglione, M.C., J. Quinteros, D. Yagupsky, P. Bonillo-Martínez, J. Hlebszevtich, V.A. Ramos, G. Vergani, D. Figueroa, S. Quesada and T. Zapata, 2010. Structure and tectonic history of the foreland basins of southernmost South America. Journal of South American Earth Sciences 29:262-277.         [ Links ]

52. Ghiglione, M.C., A.T. Navarrete-Rodríguez, M, González-Guillot and G. Bujaleski, 2013. The opening of the Magellan Strait and its geodynamic implications. Terra Nova 25(1):13-20.         [ Links ]

53. Ghiglione, M.C., J. Likerman and V. Barberón, L.B. Giambiagi, M.B. Aguirre-Urreta and F. Suarez, 2014. Geodynamic context for the deposition of coarse-grained deep-water axial channel systems in the Patagonian Andes. Basin Research 26:726-745.         [ Links ]

54. Ghiglione, M.C., N. Naipauer, C. Sue., V. Barberón, V. Valencia, M.B. Aguirre-Urreta and V.A. Ramos, 2015. U-Pb zircon ages from the northern Austral basin and their correlation with the EarlyCretaceous exhumation and volcanism of Patagonia. Cretaceous Research 55:116-128.         [ Links ]

55. Ghiglione, M.C., C. Sue, M.E. Ramos, J.E. Tobal and R.E. Gallardo, 2016. The relation between Neogene denudation of the Southernmost Andes and sedimentation in the offshore Argentine and Malvinas Basins during the opening of the Drake Passage. In: Ghiglione M.C. (Ed), Geodynamic Evolution of the Southernmost Andes. Springer Earth System Sciences, 109-135 pp.         [ Links ]

56. Gombosi, D.J., D.L. Barbeau and J. Garver, 2009. New thermochronometric constraints on the rapid Paleogene exhumation of the Cordillera Darwin complex and related thrust sheets in the Fueguian Andes. Terra Nova 21:507-515.         [ Links ]

57. González, E., 1965. La Cuenca Petrolífera de Magallanes. Instituto de Ingenieros de Minas, Santiago. Revista Minerales 91:1-15.         [ Links ]

58. González-Guillot, M., 2016. Magmatic evolution of the Southernmost Andes and its relation with subduction processes. In: Ghiglione M.C. (Ed), Geodynamic Evolution of the Southernmost Andes. Springer Earth System Sciences, 37- 74 pp.         [ Links ]

59. Gorring, M.L., S.M. Kyry, P.K. Zeitler, V.A. Ramos, D. Rubiolo, M.I. Fernandez and J.L. Panza, 1997.Neogene Patagonian plateau lavas: continental magmas associated with ridge collision at the Chile Triple Junction. Tectonics 16:1-17.         [ Links ]

60. Grunow, A.M., 1993. Creation and destruction of Weddel sea floor in the Jurassic. Geology 21:647-650.         [ Links ]

61. Guillaume, B., J. Martinod, L. Husson, M. Roddaz and R. Riquelme, 2009. Neogene uplift of central eastern Patagonia: Dynamic response to active spreading ridge subduction? Tectonics 28(2):1-19.         [ Links ]

62. Gust, D.A., K.T. Biddle, D.W. Phelps and M. Uliana, 1985. Associated Middle to Late Jurassic Volcanism and Extension in Southern America. Tectonophysics 116:223-253.         [ Links ]

63. Hanson, R.E. and T.J. Wilson, 1991. Submarine Rhyolitic Volcanism in a Jurassic Proto Marginal Basin; Southern Andes, Chile and Argentina. Andean Magmatism and Its Tectonic Setting. Geological Society of America, Special Paper 265:13-28.         [ Links ]

64. Harambour, S., 1998. Structural Evolution of the Magallanes Block, Magallanes (Austral) Basin, Offshore Argentina, Southern Atlantic. Msc Thesis Royall Holloway, University Of London, London, 136 p. (inedit).         [ Links ]

65. Harambour, S., 2002. Deep seated thrusts in the frontal part of the Magallanes Fold and Thrust belt, Última Esperanza, Chile. XV Congreso Geológico Argentino Actas 3:232, El Calafate.         [ Links ]

66. Hauser, A., 1964. La Zona Glauconítica en la Plataforma Springhill, Magallanes, Chile. Tesis de Prueba para optar al título de Geólogo, Universidad de Chile, Facultad de Ciencias Físicas y Matemáticas, Escuela de Geología, Santiago, 302 pp. (Inédito).         [ Links ]

67. Hervé, F., 2005. Estudio de la cronología y proveniencia de las Formaciones Terciarias de la Cuenca de Magallanes mediante la datación U/Pb de sus poblaciones de circones detríticos. Informe Archivo Técnico ENAP, Santiago, 31 pp. (inédito).         [ Links ]

68. Hervé, M., M. Súarez and A. Puig, 1984. The Patagonian batholith south of Tierra del Fuego, Chile: timing and tectonic implications. Journal of the Geological Society London 141:909–917.

69. Hervé, F., E. Godoy, C. Mpodozis and C.M. Fanning, 2004. Monitoring magmatism of the Patagonian Batholith through the U-Pb shrimp dating of detrital zircons in sedimentary units of the Magallanes basin. Boletino di geofisica teorica ed apliccata 45:113-117.         [ Links ]

70. Hervé, F., R.J. Pankhurst., C.M. Fanning., M. Calderón and G.M. Yaxley, 2007. The South Patagonian batholith: 150 my of granite magmatism on a plate margin. Lithos 97:373-394.         [ Links ]

71. Katz, H.R., 1963. Revision of Cretaceous Stratigraphy in the Patagonian Cordillera of Última Esperanza, Magallanes Province, Chile. American Association of Petroleum Geologist Bulletin 47:506-524.         [ Links ]

72. Katz, H.R. and W.A. Watters, 1966. Geological investigation of the Yaghán Formation (Upper Mesozoic) and associated igneous rocks of Navarino Island, southern Chile. New Zealand Journal of Geology and Geophysics 9:323-359.         [ Links ]

73. Keidel, I. and Hemmer, A., 1931. Informe preliminar sobre las investigaciones efectuadas en la región petrolífera de Magallanes en los meses de verano de 1928-1929 (12-XII- 1929). Boletín minero, Sociedad Nacional de Minería, Santiago 48:706-717.         [ Links ]

74. Klepeis, K.A., 1994a. The Magallanes and Deseado fault zones: Major segments of the South American-Scotia transform plate boundary in southernmost South America, Tierra del Fuego. Journal Geophysical Research 99(B11): 22001-22014.         [ Links ]

75. Klepeis, K.A., 1994b. Relationship between uplift of the metamorphic core of the southernmost Andes and shortening in the Magallanes foreland fold and thrust belt, Tierra Del Fuego, Chile. Tectonics 13:882-904.         [ Links ]

76. Klepeis, K.A. and J.A.Jr. Austin, 1997. Contrasting styles of superposed deformation in the southernmost Andes. Tectonics 16:755-776.         [ Links ]

77. Klepeis, K.A., P. Betka, G. Clark, M. Fanning, F. Hervé, L. Rojas, C. Mpodozis and S. Thomson, 2010. Continental under thrusting and obduction during the Cretaceous closure of the Rocas Verdes rift basin, Cordillera Darwin, Patagonian Andes. Tectonics 29(3):1-24.         [ Links ]

78. Kohn, M.J., F.S. Spear and I.W.D. Dalziel, 1993. Metamorphic P-T paths from Cordillera Darwin, a Core Complex in Tierra del Fuego, Chile. Journal of Petrology 34(3):519-542.         [ Links ]

79. Kohn, M., F.S. Spear, T.M. Harrison and I.W.D. Dalziel, 1995. Ar- 40/Ar-39 Geochronology and P-T-T Paths from the Cordillera Darwin Metamorphic Complex, Tierra del Fuego, Chile. Journal Metamorphic Geology 13:251-270.         [ Links ]

80. Kraemer, P.E., 2003. Orogenic shortening and the origin of the Patagonian orocline (56°S Lat). Journal of South American Earth Sciences 15:731-748.         [ Links ]

81. Kranck, E.H., 1932. Geological investigations in Tierra del Fuego. Acta Geographica, Helsinski 4:1-321.         [ Links ]

82. Le Roux, J.P., J. Puratich, A. Mourgues, J.L. Oyarzún, R.A. Otero, T. Torres and F. Hervé, 2010. Estuary deposits in the Río Baguales Formation (Chattian-Aquitanean), Magallanes Province, Chile. Andean Geology37 (2):329-344.         [ Links ]

83. Lodolo, E., M. Menichetti, R. Bartole, Z. Ben-Avraham, A. Tassone and H. Lippai, 2003. Magallanes–Fagnano continental transform fault (Tierra del Fuego, southernmost South America). Tectonics 22(6):1076.

84. Lozano, J.G., A. Tassone, E. Lodolo, M. Menichetti, M.E. Cerredo, D.M. Bran, F. Esteban, J.P. Ormazabal, L. Baradello and J.F. Vilas, 2018. Origin and evolution of lago Yehuin (Tierra del Fuego, Argentina): Results from a geophysical survey. Andean Geology45 (3):318-343.         [ Links ]

85. Macellari, C.E, C.A. Barrio and M.J. Manassero, 1989. Upper Cretaceous to Paleocene depositional sequences and sandstone petrography of Southwestern Patagonia (Argentina and Chile). Journal of South American Earth Sciences23:223-239.         [ Links ]

86. McAtamney, J., K. Klepeis, Ch. Mehrtens, S. Thomson, P. Betka, L. Rojas and S. Snyder, 2011. Along-strike variability of back-arc basin collapse and the initiation of sedimentation in the Magallanes foreland basin, southernmost Andes (53-54.5°S). Tectonics 30:1-26.         [ Links ]

87. Maffione, M., 2016. Kinematic evolution of the Southern Andean orogenic arc. In: Ghiglione M.C. (Ed), Geodynamic Evolution of the Southernmost Andes. Springer Earth System Sciences, 173-200 pp.         [ Links ]

88. Malumián, N., 2002. El Terciario marino. Sus relaciones con el eustatismo In: M.J. Haller (Ed.), Geología y Recursos naturales de Santa Cruz. Relatorio XV Congreso Geológico Argentino, Asociación Geológica Argentina: 237-244, El Calafate.         [ Links ]

89. Malumián, N. and A. Caramés, 2002. Foraminíferos de la Formación La Barca, Paleoceno superior, Tierra del Fuego Argentina. Revista de la Asociación Geológica Argentina 57:219-231.         [ Links ]

90. Malumián, N. and E.B. Olivero, 1998. La Formación Río Bueno, relaciones estratigráficas y edad, Eoceno inferior, Isla Grande de Tierra del Fuego, Argentina. X Congreso Latinoamericano de Geología y VI Congreso Nacional de Geología Económica Actas 1:120-124, Buenos Aires.         [ Links ]

91. Malumián, N. and E.B, Olivero, 2005. El Oligoceno-Plioceno marino del río Irigoyen, costa atlántica de Tierra del Fuego, Argentina: Una conexión atlántico-pacífica. Revista Geológica de Chile 32:117-129.         [ Links ]

92. Malumián, N., A.A. Ardolino, M. Franchi, M. Remesal and F. Salani, 1999. La sedimentación y el volcanismo terciarios en la Patagonia Extraandina. In: Caminos, R. (Ed), Geología Argentina. Instituto de Geología y Recursos Minerales. Anales 29 (18):557-612.         [ Links ]

93. Malumián, N. and Y. Nañez, 2011.The Late Cretaceous-Cenozoic transgressions in Patagonia and the Fueguian Andes: foraminifera, palaeoecology, and palaeogeography. Biological Journal of the Linnean Society 103:269-288.         [ Links ]

94. Malumián, N., T. Hromic and Y. Nañez, 2013. El Paleógeno de la cuenca de Magallanes: bioestratigrafía y discontinuidades. Anales Instituto Patagonia (Chile) 41(1):29-52.         [ Links ]

95. Martinioni, D.R., E.B. Olivero and S. Palamarczuk, 1999. Estratigrafía y discordancias del Cretácico superior-Paleoceno en la región central de Tierra del Fuego. Simposio Paleógeno de América del Sur (Buenos Aires 1996). Segemar, Anales 33:7-16.         [ Links ]

96. Mella, P.E., 2001. Control Tectónico en la Evolución de la Cuenca de Antepaís de Magallanes, XII Región, Chile. Memoria para optar al título de Geólogo, Facultad de Ciencias Químicas, Departamento Ciencias de la Tierra, Universidad de Concepción, 149 pp. (inédito).         [ Links ]

97. Mella, P.E, A. Carpinelli, I. Arriagada and M. Briceño, 2010. Prognosis Tropilla GMNH, proyecto Dorado Riquelme. Informe Archivo Técnico ENAP, Santiago, 33 pp. (inédito).         [ Links ]

98. Menichetti, M., E. Lodolo and A. Tassone, 2008. Structural geology of the Fueguian Andes and Magallanes fold thrust belt – Tierra del Fuego Island. Geologica Acta 6:19-42.

99. Miller, C.A., M. Barton, R.E. Hanson and T.H. Fleming, 1994. An Early Cretaceous volcanic arc/ marginal basin transition zone, Península Hardy, southernmost Chile. J Volcanol Geotherm. Res. 63:33-58.         [ Links ]

100. Moraga, J., 1996. Prospección de Hidrocarburos en Cuencas de Extensión Precretácicas, Magallanes, Chile. Memoria para optar al Título de Geólogo, Facultad de Ciencias Físicas y Matemáticas, Departamento de Geología, Universidad de Chile, 117 pp. (inédito).         [ Links ]

101. Mordojovich, C., 1951. Informe preliminar sobre los levantamientos geológicos de la costa Sur de Tierra del Fuego. Informe Archivo Técnico ENAP, Santiago, 7 pp. (inédito).         [ Links ]

102. Mpodozis, C. and V.A. Ramos, 1989. The Andes of Chile and Argentina. In: Ericksen G.E., M.T. Cañas Pinochet and J.A. Reinemud (Eds), Geology of the Andes and its relation to hydrocarbon and mineral resources. Circumpacific Council for Energy and Mineral Resources. Earth Science Series 11:59- 90.         [ Links ]

103. Mpodozis, C. and L. Rojas, 2006. Orogénesis en los Andes Patagónicos Australes de Tierra del Fuego: cierre de una “Cuenca Marginal” o colisión intracontinental?. XI Congreso Geológico Chileno Actas 1:283-286, Antofagasta.

104. Mpodozis, C., P.E. Mella and D. Pavda, 2011. Estratigrafía y Megasecuencias Sedimentarias en la Cuenca Austral- Magallanes, Argentina y Chile. VIII Congreso de Exploración y Desarrollo de Hidrocarburos: 35, Mar del Plata.         [ Links ]

105. Mukasa, S.B. and I.W.D. Dalziel, 1996. Southernmost Andes and South Georgia Island, North Scotia Ridge: Zircon U-Pb and muscovite 40Ar/39Ar age constraints on tectonic evolution of Southwestern Gondwanaland. Journal of South American Earth Sciences 9(5/6):349-365.         [ Links ]

106. Navarrete-Rodríguez, A.T., 2006. Análisis estructural del área de lago Mercedes, cuenca de Magallanes, Chile. Unpubl. Tesis MSc, Universidad Nacional de Colombia, Bogotá, 103 pp. (inédito).         [ Links ]

107. Natland, M., E. Gonzalez, A. Cañon and M. Ernst, 1974. A system of stages for correlation of Magallanes basin sediments. Geological Society of America Memoir139:1-57.         [ Links ]

108. Nelson, E.P., 1982. Post-tectonic uplift of the Cordillera Darwin orogenic core complex: evidence for fission track geochronology and closing temperature time relationships. Journal of the Geological Society London 139:755-761.         [ Links ]

109. Nelson, E.P., I.W.D. Dalziel and A.G. Milnes, 1980. Structural geology of the Cordillera Darwin-collisional-style orogenesis in the southernmost Chilean Andes. Eclogae Geologicae Helvetiae 73:727-751.         [ Links ]

110. Olivero, E.B. and N. Malumián, 1999. Eocene stratigraphy of Southern Tierra del Fuego. American Association of Petroleum Geologist Bulletin 83:295-313.         [ Links ]

110. Olivero, E.B. and N. Malumián, 2008. Mesozoic-Cenozoic stratigraphy of the Fueguian Andes, Argentina. Geologica Acta 6 (1):5-18.         [ Links ]

112. Olivero, E.B. and D.R. Martinioni, 2001. A review of the geology of the Argentinian Fueguian Andes. Journal of South American Earth Sciences 14(2):175-188.         [ Links ]

113. Olivero, E.B. and F.A, Medina, 2001. Geología y paleontología del Cretácico marino en el sureste de los Andes Fueguinos, Argentina. Revista de la Asociación Geológica Argentina 56:344-352.         [ Links ]

114. Olivero, E.B., N. Malumián and G. Jannou, 2002. Estratigrafía y facies de sistemas turbidíticos, estuáricos y de plataforma, Eoceno, Andes Fueguinos, Argentina. IX Reunión Argentina de Sedimentología Resúmenes 57, Córdoba.         [ Links ]

115. Olivero, E.B., N. Malumián and S. Palamarczuk, 2003. Estratigrafía del Cretácico superior-Paleoceno del área de bahía Thetis, Andes Fueguinos, Argentina: acontecimientos tectónicos y paleobiológicos. Revista Geológica de Chile 30: 245-263.         [ Links ]

116. Olivero, E.B., D.R. Martinioni, N. Malumián and S. Palamarczuk, 1999. Bosquejo geológico de la Isla Grande de Tierra del Fuego, Argentina. XIV Congreso Geológico Argentino Actas 1: 291-294, Salta.         [ Links ]

117. Otero, R., T. Torres, J. Le Roux, F. Hervé, C. Fanning, R. Yury-Yañez and D. Rubilar-Rogers, 2012. A Late Eocene age proposal for the Loreto Formation (Brunswick Península, southernmost Chile), based on fossil cartilaginous fishes, paleobotany and radiometric evidence. Andean Geology39 (1):180-200.         [ Links ]

118. Pankhurst, R.J., T.R. Riley, C.M. Fanning and S.P. Kelley, 2000. Episodic silicic volcanism in Patagonia and the Antarctic Península: chronology of magmatism associated with the breakup of Gondwana. Journal of Petrology 41:605-625.         [ Links ]

119. Platt, N.H. and P.R. Philip, 1995. Structure of the southern Falkland Islands continental shelf: initial results from new seismic data. Marine and Petroleum Geology12(7):759-711.         [ Links ]

120. Pinto, J.A., D.L. González, A.E. Pérez and P.E. Mella, 2018. Cronoestratigrafía y Potencial Petrolífero del Paleoceno de la Cuenca de Antepaís Magallanes, Sur de Chile. XV Congreso Geológico Chileno, Actas: 377, Concepción.         [ Links ]

121. Poblete. F., P. Roperch, C. Arriagada, G. Ruffet, C. Ramírez de Arellano, F. Hervé and M. Poujol, 2016. Late Cretaceous–early Eocene counterclockwise rotation of the Fueguian Andes and evolution of the Patagonia–Antarctic Península system. Tectonophysics 668-669:15-34.

122. Poblete, F., P. Roperch, F. Hervé, M. Diraison, M. Espinoza and C. Arriagada, 2014. The curved Magallanes fold and thrust belt: tectonic insights from a paleomagnetic and anisotropy of magnetic susceptibility study. Tectonics 33:2526-255.         [ Links ]

123. Prieto, X. and J. Moraga, 1990. Ambiente de sedimentación de la Formación Ballena (Eoceno superior a medio), Tierra del Fuego, Magallanes. II Simposium sobre el Terciario de ChileActas:267-273, Concepción.         [ Links ]

124. Rapalini, A.E., J. Peroni, T. Luppo, A. Tassone, M.E. Cerredo, F. Esteban, H. Lippai and J. Franciscovilas, 2015. Palaeomagnetism of Mesozoic magmatic bodies of the Fueguian Cordillera: implications for the formation of the Patagonian Orocline. In: Pueyo, E.L., F. Cifelli, A.J. Sussman and B. Oliva-Urcia (Eds), Palaeomagnetism in Fold and Thrust Belts: New Perspectives. Geological Society London, Special Publications 425:65-80 pp.         [ Links ]

125. Richiano, S., A.N. Varela, A. Cereceda and D.G. Poiré, 2012. Evolución paleoambiental de la Formación Río Mayer, Cretácico Inferior, Cuenca Austral, Provincia de Santa Cruz, Argentina. Latin American Journal of Sedimentology and Basin Analysis 19(1):3-26.         [ Links ]

126. Richiano, S., A.N. Varela, L.E. Gómez-Peral, A. Cereceda and D.G. Poiré, 2015. Composition of the Lower Cretaceous source rock from the Austral Basin (Río Mayer Formation, Patagonia, Argentina): Regional implication for unconventional reservoirs in the Southern Andes. Marine and Petroleum Geology 66:764-790.         [ Links ]

127. Richiano, S., A.N. Varela and D.G. Poiré, 2016. Heterogeneous distribution of trace fossils across initial transgressive deposits in rift basin: an example from the Springhill Formation, Argentina. Lethaia 49:524-539.         [ Links ]

128. Romans, B.W., A. Fildani, S.A. Graham, S.M. Hubbard and J.A. Covault, 2009. Importance of predecessor basin history on sedimentary fill of a retroarc foreland basin: Provenance analysis of the Cretaceous Magallanes basin, Chile (50°52°S). Basin Research 22:640-658.         [ Links ]

129. Robbiano, J.A., H. Arbe and A. Gangui, 1996. Cuenca Austral Marina. En Geología y Recursos Naturales de la Plataforma Continental Argentina. XIII Congreso Geológico Argentino y III Congreso de Exploración de Hidrocarburos, Relatorio 17:323- 341, Buenos Aires.         [ Links ]

130. Rojas, L., 1990. Sección Estructural del Bloque Codillera Nariz, sector suroccidental de la Isla de Tierra del Fuego, XII Región. Taller de Título, Departamento de Geología, Universidad de Chile (II), Santiago, 163 pp. (inédito).         [ Links ]

131. Rojas, L. and C. Mpodozis, 2006.Geología estructural de la faja plegada y corrida de Tierra del Fuego, Andes Patagónicos Chilenos. XI Congreso Geológico Chileno Actas: 325-328, Antofagasta.         [ Links ]

132. Rosello, E., 2004. Kinematics of the Andean sinistral wrenching along the Fagnano-Magallanes fault zone (Argentina-Chile Fueguian foothills). VI International Symposium on Andean Geodynamics (ISAG 2005, Barcelona), Extends abstract: 623- 626.         [ Links ]

133. Sáez. M.E., 2017. Análisis sismoestratigráfico del Cenozoico en sector norte de isla grande de Tierra del Fuego, Cuenca de Magallanes: integración de datos de subsuelo y afloramientos. Memoria para optar al título de Geólogo, Facultad de Ciencias Físicas y Matemáticas, Departamento de Geología, Universidad de Chile, 156 pp. (inédito).         [ Links ]

134. Schwarz, E., G.D. Veiga, L.A. Spalletti and J.L. Massaferro, 2011. The transgressive infill of an inherited-valley system: The Springhill Formation (lower Cretaceous) in southern Austral Basin, Argentina. Marine and Petroleum Geology 28:1218- 1241.         [ Links ]

135. SERNAGEOMIN, 2003. Mapa Geológico de Chile, escala 1:1 000 000. Servicio Nacional de Geología y Minería, Santiago.         [ Links ]

136. Sohn Y.K., M. Choe and H.R. Jo, 2002. Transition from debris flow to hyperconcentrated flow in a submarine channel (the Cretaceous Cerro Toro Formation, southern Chile) Terra Nova 14:405-415.         [ Links ]

137. Stern, C.R., 1980. Geochemistry of Chilean Ophiolites: Evidence for the Compositional Evolution of the Mantle Source of Back- Arc Basin Basalts. Journal Geophysical Research 85(B2):955- 966.         [ Links ]

138. Stern C.R. and J.M. De Witt, 2003. Rocas Verdes Ophiolites, southernmost South America: remnants of progressive stages of development on oceanic-type crust in a continental margin back-arc basin. In: Dilek Y. and P.T. Robinson (Eds), Ophiolites in Earth History. Geological Society London, Special Publications 218:665-683.         [ Links ]

139. Stern, C.R. and J.B. Stroup, 1982. The petrochemistry of the Patagonian Batholith, Última Esperanza, Chile. Antarctic Geoscience, University of Wisconsin, Madison: 135-142.         [ Links ]

140. Suárez, M., 1978. Geología de la Región al Sur del Canal Beagle, Chile. Carta Geológica de Chile N°36. Instituto de Investigaciones Geológicas, Santiago, 48pp.         [ Links ]

141. Suárez, M. and T.H. Pettigrew, 1976. An upper Mesozoic islands arc-back-arc system in the southern Andes and South Georgia. Geological Magazine 113 (4):305-328.         [ Links ]

142. Suárez, M., M. Hervé and A. Puig, 1985. Hoja Isla Hoste e islas adyacentes: Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Santiago N° 65, 133 pp.         [ Links ]

143. Tassone, A., E. Lodolo, M. Menichetti, D. Yagupsky, M. Caffau and J.F. Vilas, 2008. Seismostratigraphic and structural setting of the Malvinas Basin and its southern margin (Tierra del Fuego Atlantic offshore). Geologica Acta 6:55-67.         [ Links ]

144. Thomas, C.R., 1949a. Geology and Petroleum Exploration in Magallanes Province, Chile. American Association of Petroleum Geologist Bulletin 33:1553-1578.         [ Links ]

145. Thomas, C.R., 1949b. Manantiales field, Magallanes province, Chile. American Association of Petroleum Geologists Bulletin 33:1579-1589.         [ Links ]

146. Thomson S.N., F. Hervé and B. Stockhert, 2001. The Mesozoic- Cenozoic denudation history of the Patagonian Andes (southern Chile) and its correlation to different subduction processes. Tectonics 20:693-711.         [ Links ]

147. Torres-Carbonell, P.J., L.V. Dimieri and E.B. Olivero, 2011. Progressive deformation of a Coulomb thrust wedge: The eastern Fueguian Andes thrust-fold belt, Geological Society London, Special Publication 349:123-147.         [ Links ]

148.Torres-Carbonell, P.J., C. Guzman, D. Yagupsky and L.V. Dimieri, 2016. Tectonic models for the Patagonian orogenic curve (southernmost Andes): an appraisal based on analog experiments from the Fueguian thrust-fold belt. Tectonophysics 671:76-94.         [ Links ]

149. Torres-Carbonell, P.J., N. Malumián and E.B. Olivero, 2009. El Paleoceno-Mioceno de Península Mitre: antefosa y depocentro de techo de cuña de la cuenca Austral, Tierra del Fuego, Argentina. Andean Geology 36 (2):197-235.         [ Links ]

150. Torres-Carbonell, P.J, E.B. Olivero and L.V. Dimieri, 2008. Control en la magnitud de desplazamiento de rumbo del Sistema Transformante Fagnano, Tierra del Fuego, Argentina. Revista Geológica de Chile 35(1):63-77.         [ Links ]

151. Torres-Carbonell, P.J, L. Rodríguez Arias and M.R. Atencio, 2017. Geometry and kinematics of the Fueguian thrust-fold belt, southernmost Andes. Tectonics 36:33-50.         [ Links ]

152. Uliana, M., K. Biddle, D. Phelps and D. Gust, 1986. Significado del volcanismo y extensión Meso-Jurásicos en el extremo meridional de Sudamérica. Revista de la Asociación Geológica Argentina 40:231-253.         [ Links ]

153. Varela, A.N., D.G. Poiré, T. Martin, A. Gerdes, F.J. Goin, J.N. Gelfo and S. Hoffmann, 2012. U-Pb zircon constraints on the age of the Cretaceous Mata Amarilla Formation, Southern Patagonia, Argentina: its relationship with the evolution of the Austral Basin. Andean Geology39:359-379.         [ Links ]

154. Velásquez, A.I., 2016. Condiciones depositacionales de la Formación Palomares, XII Región de Magallanes. Memoria para optar al título de Geólogo, Facultad de Ciencias Físicas y Matemáticas, Departamento de Geología, Universidad de Chile, Santiago, 155 pp. (inédito).         [ Links ]

155. Von Goetsche, G. and J.R. Huca, 1953. Informe geológico del área Tres Morros-Agua Fresca-San Isidro. Informe Archivo Técnico ENAP, Santiago, 305 pp. (inédito).         [ Links ]

156. Wilson, T.J., 1991. Transition from Back-arc to Foreland Basin development in the southernmost Andes: Stratigraphic record from Última Esperanza District, Chile. Geological Society of America Bulletin 103:98-111.         [ Links ]

157. Winn, R.D. and R.H. Dott, 1979. Deep-water fan-channel conglomerates of Late Cretaceous age, southern Chile. Sedimentology 26:203-228.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons