SciELO - Scientific Electronic Library Online

vol.26 número2Tectonic evolution of the southern Austral-Magallanes Basin in Tierra del FuegoIn memoriam / nota necrológica profesor Dr. Harold G. Reading (1924-2019) índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




  • No hay articulos citadosCitado por SciELO

Links relacionados

  • No hay articulos similaresSimilares en SciELO


Latin American journal of sedimentology and basin analysis

versión On-line ISSN 1851-4979

Lat. Am. j. sedimentol. basin anal. vol.26 no.2 La Plata dic. 2019



The Austral-Magallanes basin (southern Patagonia): a synthesis of its stratigraphy and evolution


José I. Cuitiño1*, Augusto N. Varela2,3, Matías C. Ghiglione4, Sebastian Richiano1, Daniel G. Poiré5,6

1 Instituto Patagónico de Geología y Paleontología (CCT CONICET-CENPAT). Boulevard Brown 2915 (9120), Puerto Madryn, Chubut, Argentina.
2 Y-TEC S.A, Av. del Petróleo s/n (1923), Berisso, Argentina and Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Argentina.
3 Cátedra de Micromorfología de Suelos, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 122 y 60 s/n, (1900) La Plata, Argentina.
4 Instituto de Estudios Andinos-CONICET, Departamento de Ciencias Geológicas, Universidad de Buenos Aires, Argentina.
5 Centro de Investigaciones Geológicas (CIG- CONICET – UNLP). Diagonal 113 275 (B1904DPK) La Plata, Argentina.
6 Cátedra de Rocas Sedimentarias, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 122 y 60 s/n, (1900) La Plata, Argentina. *

Received December 6, 2019
Accepted December 9, 2019
Available online December 9, 2019


The Austral-Magallanes is an oil-producing basin located in southern Argentina and Chile, containing a siliciclastic stratigraphic record ranging from the Late Jurassic to late Cenozoic. This short paper finalize the two special volumes of the Latin American Journal of Sedimentology and Basin Analysis dedicated to the basin, and aims to provide a comprehensive synthesis based on the current knowledge about the chronology of deposition, stratigraphy, and tectonic events that shaped this basin. During the breakup of Gondwana in the Jurassic, an extensional phase was responsible for the beginning of accumulation of volcaniclastic material within grabens, which subsequently were covered by widespread Lower Cretaceous shallow and deep marine deposits that conforms the main hydrocarbon system. From Late Cretaceous onward, the subduction-related compressive regime associated to Andean uplift and fold and thrust belt migration was responsible for the onset of the foreland stage. During the Late Cretaceous, the foredeep zone accumulated a thick pile of deep marine deposits that graded upward to shallow marine and terrestrial deposits. During the Cenozoic, the foredeep was less marked and shallow marine and terrestrial sediments accumulated in wide areas, punctuated by important unconformities associated to foreland uplift. Future developments should focus on: i) improving the age-controlled stratigraphy; ii) joining the information provided by subsurface and outcrop studies; and iii) developing source to sink models to address the Andean impact in the sedimentation of the basin.

Keywords: Basin History; Stratigraphic Synthesis; Tectono-stratigraphy; Sedimentology.



The Austral-Magallanes Basin is the southernmost basin of South America, comprising the southern region of Patagonia in Argentina and Chile and part of the Tierra del Fuego Island. It includes geographic regions such as the Southern Patagonian and Fuegian Andes, the Patagonian steppe and the continental shelf. This basin is of major relevance for scientific and industrial research, especially because it has a superb record of paleoenvironmental, paleontological, climatic, paleogeographic, and tectonic events, and constitutes one of the main oil-basins in Argentina both on-shore and off-shore (Biddle et al., 1986; Robbiano et al., 1996). This basin was deeply studied till 1980’s mainly by the YPF (the Argentine national oil company) geological team (e.g. Feruglio, 1949; Russo and Flores, 1972; Arbe, 1989 and references therein), but after that, there was a nearly twenty years-gap with few contributions about this region. Despite the importance of this basin, the level of knowledge remains under evolution. During the last 20 years several important advances regarding its stratigraphy and evolution were made, mainly triggered by several PhD thesis and the conformation of research teams specialized on the Austral-Magallanes Basin (mainly from La Plata, Buenos Aires and Stanford universities).
The aim of this contribution is to provide a comprehensive synthesis based on the current knowledge about the chronology of deposition, stratigraphy and tectonic events that characterize the Austral-Magallanes Basin. We focus on the stratigraphic arrangement for the foredeep region between the Lago San Martín in the north (Santa Cruz province, Argentina), to the Última Esperanza Region (Chile) in the south. In addition, we summarize and contextualize into a regional stratigraphic framework the new contributions provided in two special issues of the Latin American Journal of Sedimentology and Basin Analysis (25.2 and 26.2), which have been dedicated to specific aspects of the basin. These new research papers comprise different approaches, including detailed stratigraphic and facies analyses of shallow marine, deltaic and fluvial systems (Moyano Paz et al., 2018; Parras and Cuitiño, 2018; Tettamanti et al., 2018; Odino Barreto et al., 2018), paleopedology (Raigemborn et al., 2018), tectonostratigraphy (Aramendía et al., 2019), biostratigraphy (González Estebenet et al., 2019) and tectonic evolution (Gallardo Jara et al., 2019). Finally, we aim to highlight some future challenges for scientific research in this basin.


The stratigraphic evolution of the Austral- Magallanes Basin, developed between the Late Jurassic and the Cenozoic, was strongly related to the tectonic forces that acted along the western boundary of the South American Plate, including an initial extensional stage followed by a compressional stage. The basin is limited by the Andes to the west and south, the Deseado Massif to the northeast, and the Río Chico-Dungeness High and Malvinas Basin to the east (Fig. 1). Three tectono-sedimentary stages of infilling are defined for this basin, each with a particular stratigraphic record, including: i) a Late Jurassic rift stage; ii) an Early Cretaceous thermal subsidence stage; iii) an Aptian – Miocene foreland stage.

Figure 1.
General map of the Austral-Magallanes Basin at Southern Patagonia. a) Location of the basin at the southernmost region of Argentina and Chile. b) Location of the study areas (color boxes) of the works form the special volumes dedicated to the Austral-Magallanes Basin. 1: Aramendía et al. (2019); 2: Moyano Paz et al. (2018); 3: Tettamanti et al. (2018); 4: Odino Barreto et al. (2018); 5: Parras and Cuitiño (2018); 6: Raigemborn et al. (2018); 7: Gallardo Jara et al. (2019). Blue stars correspond to localities included in the work of González Estebenet et al. (2019). LBA: Lago Buenos Aires; LP: Lago Pueyrredon/Posadas; LSM: Lago San Martín; LV: Lago Viedma; LA: Lago Argentino.

Tectono-stratigraphic stages
The development of the Austral-Magallanes Basin is strongly tied to the geodynamic evolution of the curved southernmost Andes, were the N-S oriented Southern Patagonian Andes, turns towards the Fuegian Andes trending W-E (Fig. 1). The basin developed in the concave side of the curvature, while the hinge sector contains the thickest depocenter (Diraison et al., 2000).
After late Paleozoic-Triassic cratonic accretion and basement consolidation (Giacosa et al., 2012; Hervé et al., 2008), a Jurassic extensional event established the basic configuration (or substratum) of the Austral-Magallanes Basin, which deeply affected the ensuing Cretaceous-Cenozoic tectonic and sedimentary stages. During extension related to the last stages of Gondwana break-up, the back-arc oceanic Rocas Verdes Basin opened along the continent margin (Calderón et al., 2016), while a regional system of N-S to NE-SW oriented grabens with synrift infill of continental and volcanic sequences affected the whole Austral-Magallanes Basin at the continental scale (Uliana et al., 1989). Overall ocean opening along the Rocas Verdes Basin increased from north to south; strong continental crustal stretching affected particularly the Última Esperanza depocenter to the south of Lago Argentino (Fig. 1) (Dalziel, 1981; Arbe and Hechem 1984; Biddle et al., 1986; Wilson 1991; Calderón et al., 2007).
Due to the increased spreading rates in the South Atlantic Ocean, coupled with elevated convergence and subduction on the western margin of South America at ~100 Ma, a compressional uplift pulse advanced from north to south along the Patagonian Andes (Fildani et al., 2003; Fosdick et al., 2011; Varela et al., 2012a; Ghiglione et al., 2015; Malkowski et al., 2016, 2017b). During the Late Cretaceous, the progressive N to S closure of the Rocas Verdes Basin produced a diachronic uplift of the cordillera, in parallel to the onset of the foreland basin in the same direction. As a consequence, the northwestern region of the Austral-Magallanes basin underwent an early onset of foreland sedimentation during the Aptian- Albian (Aramendía et al., 2018), while first sandy turbidites related to Andean uplift appeared in the
Cenomanian in the Última Esperanza depocenter (Wilson, 1991; Fildani et al., 2003; Fosdick et al., 2011; Varela et al., 2012a), and reached the eastern tip of Tierra del Fuego in the Campanian (Olivero and Malumián, 2008). As a consequence, a particular N-S deep axial depocenter developed in the Late Cretaceous foreland, with an uplifted northern realm sourcing sediments toward the southern deep-marine basin, heritage of the Jurassic stretching.
The Cenozoic was a time of pulsatory sedimentation, during which migration of the foreland basin system occurred from west to east in Patagonia and from south to north in Tierra del Fuego, following the continuous advance of the curved fold and thrust belt. While the Patagonian Andes suffered episodes of oceanic ridge collision and periods of oblique subduction, the Fuegian Andes were influenced by stretching and strike-slip kinematic in the context of the Drake Passage and Scotia Sea opening. The Miocene uplift and cratonward advance of deformation produced a change from initial marine sedimentation (Patagonian transgression) towards the continental Santa Cruz orogenic wedge (Fosdick et al., 2011; Cuitiño et al., 2012; Parras and Cuitiño 2018; Aramendía et al., 2019), representing the last stages of foreland sedimentation. Due to uplifting of the foreland, most of the basin became inactive after ~14-12 Ma, while sediment bypassed towards the offshore basin (Baristeas et al., 2013; Ghiglione et al., 2016; Sachse et al., 2016).

The beginning: rifting during the breakup of Gondwana
The rift stage of sedimentation in the Austral- Magallanes Basin (called Austral Basin) occurred during the uppermost Jurassic and the end of the Early Cretaceous. This extensional phase corresponds to the El Quemado Complex (equivalent to the Tobífera Formation; Fig. 2) syn-rift sequence (Féraud et al., 1999; Pankhurst et al., 2000, Poiré and Franzese, 2010). This complex, which presents a variable thickness between 100 and more than 1000 m, is mainly composed of volcano-sedimentary sequences, in which felsic ignimbrites dominate (Riccardi, 1971; Ramos et al., 1982; Kraemer and Riccardi, 1997). On top of the El Quemado Complex is the Springhill Formation, representing the initial transgressive infill on the previously formed grabens and half-grabens (Biddle et al., 1986; Arbe and Fernández Bell Fano, 2002; Schwarz et al., 2011; Richiano et al., 2016; and references therein). This unit was firstly defined in subsurface studies and represents the most important conventional reservoir in the Austral Basin (Thomas, 1949 a, b; Spalletti et al., 2006; Schwarz et al., 2011, among others). Studies related to sedimentological and palaeontological aspects of the outcrops of this unit are scarce (Riccardi, 1971; Kielbowicz et al., 1983; Arbe, 1986, 2002; Richiano et al., 2016). In general terms, the Springhill Formation was traditionally divided into a lower continental interval and an upper marine interval by Cecioni (1955), starting with coal and coaly shales to mainly sandstone bodies, interpreted as having developed in a coastal-plain to lagoonal palaeoenvironments, transgressed by a succession of estuarine and open-marine siliciclastic deposits (Biddle et al., 1986; Arbe and Fernández Bell Fano, 2002; Schwarz et al., 2011; Richiano et al., 2016).

Figure 2.
Chronostratigraphic chart of the north-central Austral-Magallanes Basin, showing the units from south to north and northwest to southeast in each evolutionary stages of the basin: Synrift; Sag; Cretaceous and Cenozoic foreland.

The transgression represented by the Springhill Formation continues causing the deposition of the marine black shales of the Río Mayer Formation (Fig. 2) (Berriasian-Albian) (Arbe, 2002; Richiano et al., 2012). This unit, interpreted as the sag (thermal) phase of the rifting process, presents a thickness of up to 1000 m in the Lago Argentino region and can be subdivided into three informal sections (Richiano et al., 2012). The lower section is dominated by laminated black shales interbedded with marl levels accumulated in an outer shelf setting (Richiano et al., 2012), showing the highest Total Organic Carbon (TOC) content (up to 2.81%, Richiano, 2014; Richiano et al., 2015). The middle section is composed of intensely bioturbated dark marls and shales, with a well-preserved and highly evolved Zoophycos ichnofacies (Richiano et al., 2013; Richiano, 2015). The upper section is composed of massive black shales intercalated with very fine- to fine-grained sandstones, interpreted as an outer shelf with distal low-density turbidity current deposits (Richiano et al., 2012). The frequent intercalation of sandstones in the uppermost part of the section is related to the distal influence of deltaic deposition whose lithologic expression at the basin margins to the north is the Piedra Clavada Formation (Richiano et al., 2012; 2015). Recently, the geochemistry of the Río Mayer Formation was compared to the Rocas Verdes Basin units, showing no relation with the contemporaneous Zapata Formation, suggesting a compartmentalization between these two depocenters at least during the entire Lower Cretaceous (Richiano et al., 2019).
The Piedra Clavada Formation constitutes the final stage of postrift where deltaic systems prograded south-southwestward during a Highstand Systems Tract. It is 306 m thick and it is composed of bioturbated and fossiliferous yellowish sandstones, interbedded with dark mudstone and heterolithic facies, occasionally with some conglomerate and coquina levels (Poiré and Franzese, 2010). Sedimentologic and paleontological studies suggest an open deltaic depositional environment that changes upward, after a marked omission surface, to restricted coastal marine deposits (Poiré, et al., 2002, 2017; Passalia et al., 2019). Palynologic studies for the upper part of the Piedra Clavada Formation point to an Albian age (Archangelsky et al., 2008), while an U-Pb age of this unit, taken from zircons of two tuffs levels from the upper part, ranges around 100- 101 Ma (latest Albian) (Poiré et al., 2017).

Late Cretaceous Foreland Basin: the first stage of Andean growth
During the beginning of the foreland stage at about the Albian-Cenomanian boundary (~100 Ma; Fig. 2), the northern Austral-Magallanes Basin was compartmentalized into two main depocenters: 1) the main foredeep depocenter with a central axis oriented N-S from El Chaltén (Argentina) to Última Esperanza Region (Chile); and 2) the southwest-northeast oriented Cardiel-Tres Lagos depocenter (Varela et al., 2019), both separated by the Piedra Clavada High (Varela et al., 2019).
The foredeep main depocenter shows a regressive pattern and a clear subsidence asymmetry along the north-south axis. It grades from a deep-marine setting (underfilled) in the south, to a continental setting (overfilled) in the north, due to the differences in the flexural rigidity of the crust product of the predecessor basin history (Biddle et al., 1986; Romans et al., 2010; Sickmann et al., 2018). From south to north, the onset of the foreland stage was recorded in the foredeep main depocenter by i) deep-marine deposits of the Punta Barrosa Formation (Fildani et al., 2003, 2009; Malkowski et al., 2017a,b; Daniels et al., 2019), accumulated in largely unconfined submarine fan systems until the Turonian (∼90 My); ii) shallow marine deposits of the Lago Viedma Formation (Malkowski et al., 2016, 2017a, b) and, iii) estuarine-continental deposits of the Puesto El Moro Formation (Fig. 2) (Varela et al., 2019). The Punta Barrosa Formation is correlated with the subsurface Arroyo Alfa and Middle Inoceramus formations in Tierra del Fuego (González Estebenet et al., 2019).
Towards the east of the foredeep, the onset of the foreland stage in the Cardiel-Tres Lagos depocenter corresponds to the estuarine-continental deposits of the Mata Amarilla Formation (Varela et al., 2011; 2012a; 2012b; 2013; 2015; 2016; 2018; 2019) and to a lesser extent to the La Anita Formation (Fig. 2).
The progress of Andean convergence and the development of the Patagonian fold and thrust belt resulted in eastward migration of the foredeep, as well as narrowing and deepening of the basin depocenter (Fosdick et al., 2011; Romans et al., 2011). The depositional response to this change is reflected by the thick turbiditic deposits of the Cerro Toro Formation in Chile and Argentina, accumulated during the Coniacian up to Campanian (Fig. 2) (Cecioni, 1957; Arbe and Hechem, 1984; Hubbard et al., 2008; Romans et al., 2011; Ghiglione et al., 2014; Malkowski et al., 2018). During the middle to late Campanian, deposition in the southern part of the foredeep depocenter is recorded in the subsurface as the Cabeza de León and Upper Inoceramus formations (González Estebenet et al., 2019). Towards the north, synchronous deposition is documented by the sandstone and siltstone deposits associated with north-to-south prograding deep-water slope clinoform systems preserved in the Tres Pasos and Alta Vista formations in Chile and Argentina, respectively (Macellari et al., 1989; Shultz and Hubbard, 2005; Hubbard et al., 2010; Ghiglione et al., 2014; Sickmann et al., 2018). These deep-water units are genetically related with Campanian to Maastrichtian shelf, marginal marine, and deltaic deposits of the Dorotea Formation in Chile (Covault et al., 2009; Schwartz and Graham, 2015; Gutiérrez et al., 2017), as well as with the lower unit of the La Anita Formation in Argentina (Manassero, 1988; Macellari et al., 1989; Moyano Paz et al., 2018). The uppermost Campanian to Maastrichtian interval is recorded in the Lago Argentino region by the upper unit of the La Anita Formation and by the fluvial deposits grouped in the Upper Cretaceous Continental Deposits (UCCD) which includes the Cerro Fortaleza, La Irene and Chorrillo formations in Argentina (Moyano Paz et al., 2018; Tettamanti et al., 2018; Sickmann et al., 2018, 2019). Finally, Maastricthian deposits of the Calafate Formation representing a new transgressive event are well exposed at the south margin of Lago Argentino (Odino Barreto et al., 2018). These Campanian- Maastrichtian units are interpreted to record the final phase of Cretaceous infilling which onlap the entire Austral-Magallanes Basin integrating all depocenters (Hubbard et al., 2010; Romans et al., 2011; Moyano Paz et al., 2018). The Late Cretaceous sedimentation is interrupted by a regional unconformity over which the Cenozoic sedimentation stage begins (Fosdick et al., 2015; George et al., 2019; among others).

Cenozoic Foreland Basin: the influence of the modern Andes
The Cenozoic sedimentary record of the central-northern Austral-Magallanes Basin is marked by unconformities as well as thick successions of shallow marine to terrestrial clastic deposits, which are intimately associated to the tectonic evolution of the adjacent Southern Patagonian Andes (e.g. Fosdick et al., 2011). Most of the stratigraphic and sedimentologic knowledge for this period is based on observations on the western outcrops of the fold and thrust belt along the foothills of the Andes, from Lago Buenos Aires in the north, to the Río Turbio-Última Esperanza Region in the south (Fig. 1). Although not the focus of this paper, the Tierra del Fuego Cenozoic record shows a remarkable different stratigraphic arrangement, being dominated by deep marine deposits (e.g. Ponce et al., 2008).
The Cenozoic history of the Austral-Magallanes Basin begins with an important hiatus known as the “Paleocene unconformity” (Fig. 2), a non-depositional/erosional event recognized at the top of the Maastrichtian-early Paleocene shallow marine/ deltaic deposits of the Calafate (Marenssi et al., 2004; Odino Barreto et al., 2018) and Dorotea (Schwartz and Graham, 2015) formations. This unconformity comprises a time lapse of at least 20 my (Fosdick et al., 2015; Gutiérrez et al., 2017; George et al., 2019). Towards the northern part of the basin, this Paleogene gap is more evident since nearly no Paleogene clastic deposits are recognized. In this northern region, the Eocene Posadas Basalt is widespread, intercalated between the Aptian Río Tarde Formation (Ghiglione et al., 2015) and the Miocene El Chacay Formation (Cuitiño et al., 2015) (Fig. 2). In restricted areas of the northern part, thin Eocene fluvial coal-bearing deposits of the Ligorio Márquez (Encinas et al., 2018) and Río Lista (Escosteguy et al., 2017) formations are present.
The Paleocene unconformity is covered by shallow marine to estuarine deposits of the mid- Eocene Man Aike Formation (Casadío et al., 2009; Gutiérrez et al., 2017), interpreted to represent the infill of incised valleys (Marenssi et al., 2002). Towards the Última Esperanza region (i.e. closer to the basin depocenter), the Paleogene sedimentary record is represented by either the Eocene Man Aike Formation (Gutierrez et al., 2017), and the equivalent shallow marine to fluvial coal bearing Río Turbio Formation (Fig. 2) (Malumián et al., 2000; Pearson et al., 2012). The Río Turbio Formation is up to 600 m thick (Malumián et al., 2000) and its upper part yielded a zircon MDA of 28 My (Fosdick et al., 2015).
Above the Río Turbio/Man Aike deposits is a 400 m-thick succession of fluvial conglomerates, sandstones and mudstones rich in plant remains, represented by the Río Guillermo and Río Leona formations (Malumián et al., 2000; Marenssi et al., 2005; Panti, 2011). These fluvial deposits wedge-out towards the northern part of the basin. Their age was estimated as Eocene or Oligocene (Malumián et al., 2000), however a maximum zircon depositional age of 32.8 My (Gutierrez et al., 2017) was obtained for the base of the Río Leona Formation, whereas a tuff at the base of the Río Guillermo Formation is dated at 21.7 My (Fosdick et al., 2011). In Addition, based on fossil leaves analysis, Panti (2011) suggested ages younger than previously thought. These new age assignments imply that most of the post-Río Turbio sedimentary record was accumulated during the Neogene, and that there exists other stratigraphic gaps in the Paleogene. Additional work on geochronology and physical stratigraphy of the Río Turbio region is needed in order to solve this issue.
In contrast to the Paleogene, the Neogene stratigraphic record of the Austral-Magallanes Basin is widespread, laterally and vertically continuous, and shows an elevated amount of fine-grained pyroclastic sediments. Additionally, the chronology of its accumulation is relatively well constrained. Two main depositional units are defined: the early Miocene shallow marine deposits assigned to the Patagoniense transgression; and the early-mid Miocene terrestrial deposits of the Santa Cruz Formation and equivalent units (Fig. 2). The former represents one of the largest transgressions occurred in Patagonia, and in the Austral-Magallanes Basin is represented by several lithostratigraphic units deposited in shallow marine, estuarine and deltaic sedimentation (Cuitiño and Scasso, 2010; Cuitiño et al., 2015; Parras and Cuitiño, 2018). These shallow marine deposits grade upward to fluvial deposits that represent a huge fluvial system comprising nearly the entire basin, which drained from the Andes to the Atlantic Ocean. It is mostly composed of fine-grained, flood-plain dominated deposits with poorly developed paleosols (Raigemborn et al., 2018; Cuitiño et al., 2019). Particularly in the Andean foothills, these deposits form a 1000 m thick coarsening upward succession which is thought to be the consequence of the progressive Miocene Andean uplift and eastward migration of the deformation front (Aramendía et al., 2019).
The Miocene succession is truncated by a regional erosional surface that separate from the late Miocene-Quaternary terrace conglomerates, informally known as the Rodados Patagónicos. This unconformity marks the beginning of bypass and erosional processes in the foreland of the Austral- Magallanes Basin, and it is thought to represent uplifting processes in the foreland region of the Andes (Ghiglione et al., 2016).


After the initial sequence stratigraphic proposals for the whole basin (e.g. Biddle et al., 1986; Arbe, 1986), a large amount of new data has been produced both by academy and industry. This represents an opportunity to refine the sequence stratigraphic models and to integrate data sets with different approaches and from different regions of the basin. Of particular interest are the integration of outcrop and subsurface data sets, the petrographic and zircon provenance analyses, the geochronologic calibration of stratigraphic successions and the new detailed facies analyses. Following this idea of integration, source to sink analyses may be of great conceptual relevance in order to link the geodynamic context with the stratigraphic arrangement at several scales. Some questions arise from this analysis, such us how connected were the different depocenters during the basin history? How much of the sediment production is derived from the Andes? What is the relevance of the Deseado Massif-Río Chico High in this context? Can the offshore Malvinas Basin be regarded as the same basin?
The Austral-Magallanes Basin shows excellent and abundant outcrops of sedimentary rocks of very different nature, some of them partly studied and others virtually unknown. This basin is framed by magnificent landscapes in a high latitude part of the world, close to Antarctica. Its complex geologic history was strongly influenced by the tectonic activity associated to several plate boundaries and many relevant geodynamic issues are still to solve. All these features make this basin a great opportunity to develop new exciting geologic, stratigraphic and sedimentologic research.


1. Aguirre Urreta, M.B., 2002. Invertebrados del cretácico inferior. In Haller, M. J. (ed) Geología y Recursos Naturales de Santa Cruz. Relatorio del Decimoquinto Congreso Geológico Argentino, 925 pp.         [ Links ]

2. Aramendía, I., M.E. Ramos, S. Geuna, J.I. Cuitiño and M.C. Ghiglione, 2018. A multidisciplinary study of the Lower Cretaceous marine to continental transition in the northern Austral-Magallanes basin and its geodynamic significance. Journal of South American Earth Sciences 86:54-69.         [ Links ]

3. Aramendía, I., J.I. Cuitiño, M. Ghiglione and P.J. Bouza, 2019. Tectonostratigraphic significance of the Neogene sedimentary record of the northwestern Austral-Magallanes Basin, Argentinean Patagonia. Latin American Journal of Sedimentology and Basin Analysis 26(2):99-126.         [ Links ]

4. Arbe, H.A., 1986. El Cretácico de la Cuenca Austral: sus ciclos de Sedimentación. Tesis doctoral inédita. Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales, Buenos Aires.         [ Links ]

5. Arbe, H.A., 1989. Estratigrafía, discontinuidades y evolución sedimentaria del Cretácico en la Cuenca Austral, provincia de Santa Cruz. In: G. Chebli and L.A. Spalletti (Eds.), Cuencas Sedimentarias Argentinas, Instituto Superior de Correlación Geológica, Universidad Nacional de Tucumán, Serie de Correlación Geológica 6, 419-442. San Miguel de Tucumán.         [ Links ]

6. Arbe, H.A., 2002. Análisis estratigráfico del Cretácico de la Cuenca Austral. In: Haller, M.J. (Ed.), Geología y Recursos Naturales de Santa Cruz. Relatorio del Decimoquinto Congreso Geológico Argentino, 103-128 pp.         [ Links ]

7. Arbe, H.A. and J. Hechem, 1984. Estratigrafía y facies de depósitos continentales, litorales y marinos del Cretácico superior, lago Argentino. Actas IX Congreso Geológico Argentino 7: 124-158.         [ Links ]

8. Arbe, H. and F. Fernández Bell Fano, 2002. Formación Springhill en el área costa afuera. In: M., Schiuma, G., Hinterwimmer and G., Vergani, (Eds.), Rocas Reservorio de las Cuencas Productivas Argentinas, V Congreso de Exploración y Desarrollo de Hidrocarburos, Mar del Plata, 75-89.         [ Links ]

9. Archangelsky, S., A. Archangelsky, D.G. Poiré and N.D. Canessa, 2008. Registros palinológicos en la Formación Piedra Clavada (Albiano) en su localidad tipo, provincial de Santa Cruz, Argentina. Revista del Museo de Ciencias Naturales, Nueva Serie 10:105-111.         [ Links ]

10. Baristeas, N., Z. Anka, R. Di Primio, J.F. Rodríguez, D. Marchal, F. Dominguez, 2013. New insights into the tectono-stratigraphic evolution of the Malvinas Basin, offshore of the southernmost Argentinean continental margin. Tectonophysics 604:280-295.         [ Links ]

11. Bernhardt, A., Z.R. Jobe and D.R. Lowe, 2011. Stratigraphic evolution of a submarine channel-lobe complex system in a narrow fairway within the Magallanes foreland basin, Cerro Toro Formation, southern Chile. Marine and Petroleum Geology 28:785-806.         [ Links ]

12. Biddle, K., M. Uliana, R. Jr. Mitchum, M. Fitzgerald and R. Wright, 1986. The stratigraphic and structural evolution of central and eastern Magallanes Basin, Southern America. In: P. Allen and P. Homewood (Eds.), Foreland basins. International Association of Sedimentology Special Publication 8:41-61.         [ Links ]

13. Calderón, M., A. Fildani, F. Hervé, C.M. Fanning, A. Weislogel and U. Cordani, 2007. Late Jurassic bimodal magmatism in the northern sea-floor remnant of the Rocas Verdes basin, southern Patagonian Andes. Journal of the Geological Society of London 162:1011-1022.         [ Links ]

14. Calderón, M., F. Hervé, F. Fuentes, J.C. Fosdick, F. Sepúlveda and G. Galaz, 2016. Tectonic evolution of Paleozoic and Mesozoic andean metamorphic complexes and the Rocas Verdes ophiolites in southern Patagonia. In: Ghiglione, M.C. (Ed.), Geodynamic Evolution of the Southernmost Andes. Springer, Cham, pp. 7-36.         [ Links ]

15. Cecioni, G., 1955. Distribuzione verticale di alcune Kossmaticeratidae nella Patagonia cilena. Bollettino della Società Geologica Italiana 74:141-149.         [ Links ]

16. Cecioni, G.O., 1957. Cretaceous flysch and molasses in departamento Última Esperanza, Magallanes Province, Chile. AAPG Bulletin 41: 538-564.         [ Links ]

17. Covault, J.A., B.W. Romans and S.A. Graham, 2009. Outcrop expression of a continentalmargin-scale shelf-edge delta from the Cretaceous Magallanes Basin, Chile. Journal of Sedimentary Research 79:523-539.         [ Links ]

18. Cuitiño, J.I. and A. Scasso, 2010. Sedimentología y paleoambientes del Patagoniano y su transición a la Formación Santa Cruz al sur del Lago Argentino, Patagonia Austral. Revista de la Asociación Geológica Argentina 66(3):406-417.         [ Links ]

19. Cuitiño, J.I., M.M. Pimentel, R. Ventura Santos and R.A. Scasso, 2012. High resolution isotopic ages for the “Patagoniense” transgression in southwest Patagonia: stratigraphic implications. Journal of South American Earth Sciences 38: 110-122.

20. Cuitiño, J.I., R. Ventura Santos, P.J. Alonso Muruaga, R.A. Scasso, 2015. Sr-stratigraphy and sedimentary evolution of early Miocene marine foreland deposits in the northern Austral (Magallanes) Basin, Argentina. Andean Geology 42(3):364- 385.         [ Links ]

21. Cuitiño, J.I., S.F. Vizcaíno, M.S. Bargo, I. Aramendía, 2019. Sedimentology and fossil vertebrates of the Santa Cruz Formation (early Miocene) in Lago Posadas, southwestern Patagonia, Argentina. Andean Geology 46 (2):383-420.         [ Links ]

22. Dalziel, I.W.D., 1981. Back-arc extension in the southern Andes: A review and critical reappraisal. Royal Society of London Philosophical Transactions 300:319-335.         [ Links ]

23. Dalziel, I.W.D., M.J. de Wit and K.F. Palmer, 1974. Fossil marginal basin in the southern Andes. Nature 250:291-294.         [ Links ]

24. Daniels, B.G., S.M. Hubbard, B.W. Romans, M.A. Malkowski, W.A. Matthews, A. Bernhardt, S.A. Kaempfe, Z.R. Jobe, J. C. Fosdick, T.M. Schwartz, A. Fildani and S.A. Graham, 2019. Revised chronostratigraphic framework for the Cretaceous Magallanes-Austral Basin, Última Esperanza Province, Chile. Journal of South American Earth Sciences 94:102209.         [ Links ]

25. Diraison, M., P.R. Cobbold, D. Gapais, E.A. Rossello and C. Le Corre, 2000. Cenozoic crustal thickening, wrenching and rifting in the foothills of the southernmost Andes. Tectonophysics 316:91-119.         [ Links ]

26. Féraud, G., V. Alric, M. Fornari, H. Bertrand and M. Haller, 1999. 40Ar/39Ar dating of the Jurassic volcanic province of Patagonia: migrating magmatism related to Gondwana break-up and subduction. Earth and Planetary Science Letters 172: 83-98.         [ Links ]

27. Feruglio, E., 1949. Descripción Geológica de la Patagonia, Vol. I-II. Ministerio de Industria y Comercio de La Nación, Dirección General de Yacimientos Petrolíferos Fiscales, Buenos Aires, 349 pp.         [ Links ]

28. Fildani, A., T.D. Cope, S.A. Graham and J.L. Wooden, 2003. Initiation of the Magallanes Foreland basin: Timing of the southermost Patagonian Andes orogeny revised by detrital zircon provenance analysis. Geology 31:1081-1084.         [ Links ]

29. Fildani, A., S.M. Hubbard and B.W. Romans, 2009. Stratigraphic evolution of deep-water architecture: examples of controls and depositional styles from the Magallanes Basin, Chile. SEPM Field Trip Guide 10, 73pp.         [ Links ]

30. Fosdick, J.C., B.W. Romans, A. Fildani, A. Bernhardt, M. Calderón and S.A. Graham, 2011. Kinematic evolution of the Patagonian retro-arc fold-and-thrust belt and Magallanes foreland basin, Chile and Argentina, 51°30′S. Geological Society of American Bulletin 123:1679-1698.

31. Fosdick, J.C., M. Grove, S.A. Graham, J.K. Hourigan, O. Lovera and B.W. Romans, 2015. Detrital thermochronologic record of burial heating and sediment recycling in the Magallanes foreland basin, Patagonian Andes. Basin Research 27:546-572.         [ Links ]

32. Gallardo Jara, R.E., M.C. Ghiglione and L. Rojas Galliani, 2019. Tectonic evolution of the southern Austral-Magallanes Basin in Tierra del Fuego. Latin American Jounral of Sedimentology and Basin Analysis 26(2):127-154.         [ Links ]

33. George, S.W.M., S.N. Davis, R.A. Fernández, L.M.E. Manríquez, M.A. Leppe, B.K. Horton and J.A. Clarke, 2019. Chronology of deposition and unconformity development across the Cretaceous–Paleogene boundary, Magallanes-Austral Basin, Patagonian Andes, Journal of South American Earth Sciences

34. Ghiglione, M.C., J. Likerman, V. Barberón, L. Beatriz Giambiagi, B. Aguirre-Urreta and F. Suarez, 2014. Geodynamic context for the deposition of coarse-grained deepwater axial channel systems in the Patagonian Andes. Basin Research 26:726-745.         [ Links ]

35. Ghiglione, M.C., M. Naipauer, C. Sue, V. Barberón, V. Valencia, B. Aguirre-Urreta and A. Ramos, 2015. U-Pb zircon ages from the northern Austral basin and their correlation with the Early Cretaceous exhumation and volcanism of Patagonia. Cretaceous Research 55:116-128.         [ Links ]

36. Ghiglione, M.C., V.A. Ramos, J.I. Cuitiño and V. Barberón, 2016. Growth of the Southern Patagonian Andes (46–53°S) and Their Relation to Subduction Processes. In: A. Folguera, M. Naipauer, L. Sagripanti, M. Ghiglione, D. Orts and L. Giambiagi (Eds.), Growth of the Southern Andes. Springer Earth System Sciences, DOI 10.1007/978-3-319-23060-3_10, Springer International Publishing, Switzerland.

37. Giacosa R., D., Fracchia and N. Heredia, 2012. Structure of the Southern Patagonian Andes at 49°S. Geológica Acta 10:265- 282.         [ Links ]

38. González Estebenet, M.S., M.A. Paolillo and M.V. Guler, 2019. Marine Cretaceous organic-walled dinoflagellate cysts from the Austral-Magallanes Basin. Latin American Journal of Sedimentology and Basin Analysis 26 (2):75-98.         [ Links ]

39. Gutiérrez, N.M., J.P. Le Roux, A. Vásquez, C. Carreño, V. Pedroza, J. Araos, J.L. Oyarzún, J.P. Pino, H.A. Rivera and L.F. Hinojosa, 2017. Tectonic events reflected by palaeocurrents, zircon geochronology, and palaeobotany in the Sierra Baguales of Chilean Patagonia. Tectonophysics 695:76-99.         [ Links ]

40. Hervé, F., M. Calderón and V. Faúndez, 2008. The metamorphic complexes of the Patagonian and Fuegian Andes. Geológica Acta 6, 43-53.         [ Links ]

41. Hubbard, S.M., B.W. Romans and S.A Graham, 2008. Deep-water foreland basin deposits of the Cerro Toro Formation, Magallanes Basin, Chile: architectural elements of a sinuous basin axial channel belt. Sedimentology 55:1333-1359.         [ Links ]

42. Hubbard, S.M., A. Fildani, B.W. Romans, J.A. Covault and T.R. McHargue, 2010. High relief slope clinoform development: insights from outcrop, Magallanes Basin, Chile. Journal of Sedimentary Research 80:357-375.         [ Links ]

43. Katz, H.R., 1963. Revision of Cretaceous stratigraphy in Patagonian cordillera of Última Esperanza, Magallanes Province, Chile. American Association of Petroleum Geologists Bulletin 47:506- 524.         [ Links ]

44. Kielbowicz, A.A., D.I. Ronchi and N.H. Stach, 1983. Foraminíferos y ostrácodos valanginianos de la Formación Springhill, Patagonia Austral. Revista de la Asociación Geológica Argentina 38:313-339.         [ Links ]

45. Kraemer, P.E. and A.C. Riccardi, 1997. Estratigrafía de la región comprendida entre los lagos Argentino y Viedma (49° 40’ - 50° 10’ LS), Provincia de Santa Cruz. Revista de la Asociación Argentina de Geología 52 (3):333-360.

46. Leanza, A.F., 1970. Amonites nuevos o poco conocidos del Aptiano, Albiano y Cenomaniano de los Andes Australes con notas acerca de su posición estratigráfica. Revista de la Asociación Geológica Argentina 25(2):197-261.         [ Links ]

47. Macellari, C.E., C.A. Barrio and M.J. Manassero, 1989. Upper Cretaceous to Paleocene depositional sequences and sandstone petrography of southwestern Patagonia (Argentina and Chile). Journal of South American Earth Science 2:223-239.         [ Links ]

48. Malkowski, M.A., M. Grove and S.A. Graham, 2016. Unzipping the Patagonian Andes– longlived influence of rifting history on foreland basin evolution. Lithosphere 8:23-28.

49. Malkowski, M.A., T.M. Schwartz, G.M. Sharman, Z.T. Sickmann and S.A. Graham, 2017a. Stratigraphic and provenance variations in the earth evolution of the Magallanes-Austral foreland basin: implications for the role of longitudinal versus transverse sediment dispersal during arc-continent collision. Geological Society of American Bulletin 129:349-371.         [ Links ]

50. Malkowski, M.A., G.R. Sharman, S.A. Graham and A. Fildani, 2017b. Characterisation and diachronous initiation of coarse clastic deposition in the Magallanes-Austral foreland basin, Patagonian Andes. Basin Research 29:298-326.         [ Links ]

51. Malkowski, M.A., Z.R. Jobe, G.R. Sharman and S.A. Graham, 2018. Down-slope facies variability within deep-water channel systems: insights from the Upper Cretaceous Cerro Toro Formation, southern Patagonian. Sedimentology 65:1918-1946.         [ Links ]

52. Manassero, M.J., 1988. Petrografía y procedencia de las areniscas cretácicas superiores de la Cuenca Austral Argentina. Revista de la Asociación Geológica Argentina, 47:73-82.         [ Links ]

53. Moyano Paz, D., C. Tettamanti, A.N. Varela, A. Cereceda and D.G. Poiré, 2018. Depositional processes and stratigraphic evolution of the Campanian deltaic system of La Anita Formation, Austral-Magallanes Basin, Patagonia, Argentina. Latin American Journal of Sedimentology and Basin Analysis 25 (2):69-92.         [ Links ]

54. Odino Barreto A.L., A. Cereceda, L.E. Gómez-Peral, M.D. Coronel, C. Tettamanti and D.G. Poiré, 2018. Sedimentology of the shallow marine deposits of the Calafate Formation during the Maastrichtian transgression at Lago Argentino, Austral- Magallanes basin, Argentina. Latin American Journal of Sedimentology and Basin Analysis 25 (2):69-92         [ Links ]

55. Olivero, E.B., and N. Malumián, 2008, Mesozoic–Cenozoic stratigraphy of the Fuegian Andes, Argentina. Geologica Acta 6:5-18.

56. Pankhurst, R.J., T.R. Riley, C.M. Fanning and S.P. Kelley, 2000. Episodic silicic volcanism in Patagonia and Antarctic Peninsula: Chronology of magmatism associated with the break-up of Gondwana. Journal of Petrology 41:605-625.         [ Links ]

57. Parras, A.M. and J.I.Cuitiño, 2018. The stratigraphic and paleoenvironmental significance of the regressive Monte Observación Member, early Miocene of the Austral- Magallanes Basin, Patagonia. Latin American Journal of Sedimentology and Basin Analysis 25:93-115.         [ Links ]

58. Parras, A., G.R. Dix and M. Griffin, 2012. Sr-Isotope chronostratigraphy of Paleogene-Neogene marine deposits: Austral Basin, southern Patagonia (Argentina). Journal of South American Earth Sciences 37:122-135.         [ Links ]

59. Passalia, M.G., A. Iglesias, A.N. Varela, P. Santamarina, D.G. Poiré and S.M. Richiano, 2018. The ferm Konijnenburgia alata in the mid-Cretaceous of Patagonia, and the Matoniaceae fossil record. Cretaceous Research 89:264-278.         [ Links ]

60. Perkins, M.E., J.G. Fleagle, M.T. Heizler, B. Nash, T.M. Bown, A.A. Tauber and M.T. Dozo, 2012. Tephrochronology of the Miocene Santa Cruz and Pinturas Formations, Argentina. In: Vizcaíno, S.F., R.F. Kay and M.S. Bargo, (Eds.), Early Miocene Paleobiology in Patagonia. High-Latitude Paleocommunities of the Santa Cruz Formation. Cambridge University Press, pp. 23- 40.         [ Links ]

61. Poiré, D.G. and J.R. Franzese, 2010. Mesozoic clastic sequences from a Jurassic rift to Cretaceous foreland basin, Austral Basin, Patagonia, Argentina. In: del Papa, C. and R. Astini (Eds), Field Excursion Guidebook, 18 International Sedimentological Congress, Argentina. FE-C13, 53 pp.         [ Links ]

62. Poiré, D.G., N. Canessa, A. Carloni and O. Ferrer, 2002. La Formación Piedra Clavada en el área de Tres Lagos, provincia de Santa Cruz, Argentina. XV Congreso Geológico Argentino, Actas I: 820-825         [ Links ]

63. Poiré, D.G., A. Iglesias, A.N. Varela, S. Richiano, M. Mejía Ibañez and C. Stroemberg, 2017. Edades U-Pb en zircones de tobas de la Fm. Piedra Clavada, pcia. de Santa Cruz, Argentina: un marcador albiano tardio para la evolución tectónica y biológica de la Cuenca Austral. Actas del XX Congreso Geológico Argentino TU-S15, 95-98.         [ Links ]

64. Ponce, J.J., E.B. Olivero and D.R. Martinioni, 2008. Upper Oligocene–Miocene clinoforms of the foreland Austral Basin of Tierra del Fuego, Argentina: Stratigraphy, depositional sequences and architecture of the foredeep deposits. Journal of South American Earth Sciences, 26:36-54.

65. Raigemborn, M.S., V. Krapovickas, A.F. Zucol, L. Zapata, E. Beilinson, N. Toledo, J. Perry, S. Lizzoli, L. Martegani, D.E. Tineo and E. Passeggi, 2018. Paleosols and related soil-biota of the early Miocene Santa Cruz Formation (Austral- Magallanes Basin, Argentina): a multidisciplinary approach to reconstructing ancient terrestrial landscapes. Latin American Journal of Sedimentology and Basin Analysis 25:117-148.         [ Links ]

66. Ramos, V.A., H. Niemeyer, J. Skarmeta and J. Muñoz, 1982. Magmatic evolution of the Austral Patagonian Andes. Earth- Science Reviews 18:411-443.         [ Links ]

67. Riccardi, A.C., 1971. Estratigrafía en el oriente de la Bahía de la Lancha, Lago San Martín, Santa Cruz, Argentina. Extracto de la Revista del Museo de la Plata, Sección Geológica, Tomo VII: 245-318.         [ Links ]

68. Riccardi, A.C., 1988. The Cretaceous system of southern South America. Geological Society of America, Memoir 168:1-116.         [ Links ]

69. Richiano, S., 2014. Lower Cretaceous anoxic conditions in the Austral Basin, South-Western Gondwana, Patagonia Argentina. Journal of South American Earth Sciences 54: 37- 46.         [ Links ]

70. Richiano, S., 2015. Environmental factors affecting the development of the Zoophycos ichnofacies in the Lower Cretaceous Río Mayer Formation (Austral Basin, Patagonia). Palaeogeography, Palaeoclimatology, Palaeoecology 439:17-26.         [ Links ]

71. Richiano, S., A.N. Varela, A. Cereceda and D.G. Poiré, 2012. Evolución paleoambiental de la Formación Río Mayer, Cretácico inferior, Cuenca Austral, Patagonia Argentina. Latin American Journal of Sedimentology and Basin Analysis 19: 3-26.         [ Links ]

72. Richiano, S., D.G. Poiré and A.N. Varela, 2013.Icnología de la Formación Río Mayer, Cretácico Inferior, SO Gondwana, Patagonia, Argentina. Ameghiniana 50:273-286.         [ Links ]

73. Richiano, S., A.N. Varela, L.E. Gómez-Peral, A. Cereceda and D.G. Poiré, 2015. Composition of the Lower Cretaceous black shales from the Austral Basin (Patagonia, Argentina): implication for unconventional reservoirs in the southern Andes. Marine and Petroleum Geology 66:764-790.         [ Links ]

74. Richiano, S., A.N. Varela and D.G. Poiré, 2016. Heterogeneous distribution of trace fossils across initial transgressive deposits in rift basins: an example from the Springhill Formation, Argentina. Lethaia 49:524-539.         [ Links ]

75. Richiano, S., L.E. Gómez-Peral, A.N. Varela, A. Gómez Dacal, C.E. Cavarozzi and D.G. Poiré, 2019. Geochemical characterization of black shales from the Río Mayer Formation (Early Cretaceous), Austral-Magallanes Basin, Argentina: Provenance response during Gondwana break-up. Journal of South American Earth Sciences 93:67-83.         [ Links ]

76. Robbiano, J.A., H. Arbe and A. Bangui, 1996. Cuenca Austral Marina. In: V.A. Ramos, M. Turic, (Eds.), Geología y Recursos Naturales de la Plataforma continental Argentina. XIII Congreso Geológico Argentino, Relatorio, y Congreso de Exploración de Hidrocarburos N° 3:343-358. Buenos Aires.         [ Links ]

77. Romans, B.W., A. Fildani, S.A. Graham, S.M. Hubbard and J.A. Covault, 2010. Importance of predecessor basin history on the sedimentary fill of a retroarc foreland basin: provenance analysis of the Cretaceous Magallanes basin, Chile (50-52°S). Basin Research 22:640-658.         [ Links ]

78. Romans, B.W., A. Fildani, S.M. Hubbard, J.A. Covault, J.C. Fosdick and S.A. Graham, 2011. Evolution of deep-water stratigraphic architecture, Magallanes Basin, Chile. Marine and Petroleum Geology 28:612-628.         [ Links ]

79. Russo, A. and M.A.Flores, 1972. Patagonia Austral Extraandina. In: Geología Regional Argentina, Leanza, A.F. (Ed.), Academia Nacional de Ciencias: 707-725. Córdoba         [ Links ]

80. Schwartz, T.M. and S.A. Graham, 2015. Stratigraphic architecture of a tide-influenced shelf edge delta, upper Cretaceous Dorotea Formation, Magallanes-Austral basin, Patagonia. Sedimentology 62:1039-1077.         [ Links ]

81. Schwartz, T.M., J.C. Fosdick, S.A. Graham, 2017. Using detrital zircon U-Pb ages tocalculate Late Cretaceous sedimentation rates in the Magallanes-Austral basin, Patagonia. Basin Research 29:725-746.         [ Links ]

82. Schwarz, E., G.D. Veiga, L.A. Spalletti and J.L. Massaferro, 2011. The transgressive infill of an inherited-valley system: The Springhill Formation (lower Cretaceous) in southern Austral Basin, Argentina. Marine and Petroleum Geology 28:1218- 1241.         [ Links ]

83. Shultz, M.R. and S.M. Hubbard, 2005.Sedimentology, stratigraphic architecture, and ichnology of gravity-flow deposits partially ponded in a growth-fault-controlled slope mini basin, Tres Pasos Formation (Cretaceous), southern Chile. Journal of Sedimentary Research 75:440-453.         [ Links ]

84. Sickmann, Z.T., T.M. Schwartz and S.A. Graham, 2018. Refining stratigraphy and tectonic history using detrital zircon maximum depositional age: an example from the Cerro Fortaleza Formation, Austral Basin, southern Patagonia. Basin Research 30:708-729.         [ Links ]

85. Sickmann, Z.T., T.M. Schwartz, M.A. Malkowski, S.C. Dobbs and S.A. Graham, 2019. Interpreting large detrital geochronology data sets in retroarc foreland basins: An example from the Magallanes-Austral Basin, southernmost Patagonia. Lithosphere 11:620-642         [ Links ]

86. Spalletti, L.A., S.D. Matheos, E. Sánchez and F. Oyarzábal, 2006. Análisis diagenético de la Formación Springhill (Santa Cruz, Argentina). Boletín de Informaciones Petroleras Nueva Serie 4:60-73.         [ Links ]

87. Tettamanti, C., D. Moyano Paz, A.N. Varela, L.E. Gómez-Peral, D.G. Poiré, A. Cereceda and L.A. Odino Barreto, 2018. Sedimentology and stratigraphy of the uppermost Cretaceous Continental Deposits of the Austral-Magallanes Basin, Patagonia, Argentina. Latin American Journal of Sedimentology and Basin Analysis 25:149-168.         [ Links ]

88. Thomas, C.R., 1949a. Geology and Petroleum Exploration in Magallanes Province, Chile. American Association of Petroleum Geologists Bulletin 33:1553-1578.         [ Links ]

89. Thomas, C.R., 1949b. Manantiales field, Magallanes province, Chile. American Association of Petroleum Geologists Bulletin 33:1579-1589.         [ Links ]

90. Uliana V.M.A., K.T. Biddle and J. Cerdan, 1989. Mesozoic extension and the formation of Argentine sedimentary basins. In: Tankard A.J. and H.R. Balkwill (Eds.), Extensional Tectonics and Stratigraphy of the North Atlantic Margins. American Association of Petroleum Geology Bulletin, Memoirs 46:599- 613         [ Links ]

91. Varela, A.N., 2015. Tectonic control of accommodation space and sediment supply within the Mata Amarilla Formation (lower Upper Cretaceous) Patagonia, Argentina. Sedimentology 62: 867-896.         [ Links ]

92. Varela, A.N., S. Richiano and D.G. Poiré, 2011. Tsunami vs storm origin for shell bed deposits in a lagoon environment: an example from the Upper Cretaceous of Southern Patagonia, Argentina. Latin American Journal of Sedimentology and Basin Analysis 18:63-85.         [ Links ]

93. Varela, A.N., D.G. Poiré, T. Martin, A. Gerdes, F.J. Goin, J.N. Gelfo and S. Hoffmann, 2012a. U-Pb zircon constraints on the age of the Cretaceous Mata Amarilla formation, southern Patagonia, Argentina: its relationship with the evolution of the Austral basin. Andean Geology 39:359-379.         [ Links ]

94. Varela, A.N., G.D. Veiga and D.G., Poiré, 2012b. Sequence stratigraphic analysis of Cenomanian greenhouse palaeosols: a case study from southern Patagonia, Argentina. Sedimentary Geology 271-272:67-82.         [ Links ]

95. Varela, A.N., L.E. Gómez-Peral, S. Richiano and D.G. Poiré, 2013. Distinguishing similar volcanic source areas from an integrated provenance analysis: implication from foreland Andean basins. Journal of Sedimentary Research 83:258-276.         [ Links ]

96. Varela, A.N., A. Iglesias, D.G. Poiré, A.B. Zamuner, S. Richiano and M. Brea, 2016. Petrified forests in the Austral Basin marks a Cenomanian forced regression heterogeneous surface. Geobiology 14:293-313.         [ Links ]

97. Varela A.N., M.S. Raigemborn, S. Richiano, T. White, D.G. Poiré and S. Lizzoli, 2018. Late Cretaceous paleosols as paleoclimate proxies of high-latitude Southern Hemisphere: Mata Amarilla Formation, Patagonia, Argentina. Sedimentary Geology 363:83-95.         [ Links ]

98. Varela, A.N., S. Richiano, L. D’Elia, D. Moyano Paz, C. Tettamanti and D.G. Poiré, 2019. Sedimentology and stratigraphy of the Puesto El Moro Formation, Patagonia, Argentina: Implications for Upper Cretaceous paleogeographic reconstruction and compartmentalization of the Austral-Magallanes Basin. Journal of South American Earth Sciences 92:466-480.

99. Wilson, T.J., 1991. Transition from Back-Arc to Foreland Basin Development in the Southernmost Andes-Stratigraphic Record from the Última-Esperanza-District, Chile. Geological Society of America Bulletin 103:98-111.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons