SciELO - Scientific Electronic Library Online

 
vol.83 número2Predicción de rendimiento de fruto de híbridos de tomate con huellas genómicasTasa de crecimiento y patogenicidad de aislamientos de Diaporthe phaseolorum var. caulivora índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

  • No hay articulos citadosCitado por SciELO

Links relacionados

Compartir


Phyton (Buenos Aires)

versión On-line ISSN 1851-5657

Phyton (B. Aires) vol.83 no.2 Vicente López dic. 2014

 

ARTÍCULOS ORIGINALES

Oleic conversion effect on the tocopherol and phytosterol contents in sunflower oil

Efecto de la conversión oleica sobre la cantidad de tocoferoles y fitoesteroles en aceite de girasol

 

Ayerdi Gotor A1,5, M Berger1, F Labalette2, S Centis3, J Daydé1, A Calmon4

1 UMR Inra/EIP 1054-université de Toulouse, École d'ingénieurs de Purpan, Laboratoire d'agrophysiologie, 75, voie du TOEC, BP 57611, 31076 Toulouse cedex 03 France.
2 ONIDOL, 12 avenue George V, 75008 PARIS, France.
3 ASEDIS-SO, 39 chemin Virebent, 31200 TOULOUSE, France.
5 UPSP/DGER 115-université de Toulouse, École d'ingénieurs de Purpan, Laboratoire d'agrophysiologie, 75, voie du TOEC, BP 57611, 31076 Toulouse cedex 03, France
5 Permanent address : Institut Polytechnique LaSalle Beauvais BP 30313, 60026 BEAUVAIS CEDEX, France. Tel: + 33 (0)3 44 06 25 49 - Fax: +33(0)3 44 06 25 26.
Address Correspondence to: Alicia Ayerdi Gotor, e-mail: alicia.ayerdi-gotor@lasalle-beauvais.fr

Recibido / Received 5.X.2013.
Aceptado / Accepted 22.X.2013.

 


Abstract. In sunflower, conventional breeding is widely used for the modification of traits such as the fatty acid composition, disease resistance, and mainly for obtaining commercial oil with high oleic acid content. There is a growing interest on tocopherols and phytosterols present in sunflower, due to their human health benefits. This emphasizes the need of studies on breeding programs for these bioactive components. A hundred of isogenic pairs of classic and its oleic version of hybrids and parental lines were cultivated in different locations in France between 2003 and 2006. The results indicated that sunflower oil is rich in a-tocopherol and ß-sitosterol. However, there was little correlation between traditional linoleic and oleic sunflower oils for the total tocopherol content, and no correlation for the total phytosterol content. Additionally, there was little or no effect of the oleic conversion for the tocopherol and phytosterol contents. Nevertheless, tocopherol content was significantly lower in the oleic sunflower than in the classic genotypes, but it was function of the year.

Keywords: Sunflower; Oil; Oleic conversion; Phytosterols; Tocopherols.

Resumen. En girasol, la selección convencional es ampliamente utilizada para la modificación de caracteres como la composición en ácidos grasos, la resistencia a enfermedades, y especialmente la obtención de aceites comerciales con un alto contenido en ácido oleico. Hay un creciente interés en los tocoferoles y en los fitoesteroles, presentes en el girasol, por sus propiedades benéficas sobre la salud humana. Esto enfatiza la necesidad de estudios de programas de selección por estos componentes bioactivos. Un centenar de parejas isogénicas de híbridos y líneas parentales de girasol clásico y su versión oleica fueron cultivados entre 2003 y 2006 en diferentes lugares en Francia. Los resultados indicaron que el girasol es rico ena-tocoferol y en ß-sitoesterol. Sin embargo, hubo muy poca correlación entre el aceite de girasol tradicional linoléico y el rico en ácido oleico, en lo que respecta la a cantidad total de tocoferoles, y ninguna correlación con respecto a la cantidad de fitoesteroles totales. Por otra parte, no hubo casi o ningún efecto de la conversión de ácido oleico sobre las cantidades de tocoferoles y de fitoesteroles. No obstante, la cantidad de tocoferoles fue significativamente inferior en el girasol oleico que en el clásico, pero solo en algunos años.

Palabras clave: Girasol; Aceite; Conversión oleica; Fitoesteroles, Tocoferoles.


 

INTRODUCTION

The Mediterranean diet, with a high intake of oleic acid (mainly from olive oil consumption), has a proven benefit on human health. Many studies have demonstrated that a continuous intake of polyunsaturated fatty acids (PUFA) can reduce cardiovascular problems, dyslipidemias, diabetes and some cancers (Reaven et al., 1993; Zock & Katan, 1998; Benatti et al., 2004; Brouwer et al., 2004). In the 90's, sunflower and canola breeders became interested in oleic acid, and started research programs to develop new varieties with a high content on this fatty acid. Sunflower breeders also generated hybrids with a very high oleic acid content (more than 90%). A variety is considered as oleic when its oleic acid content is over 75% of the total fatty acids. Similarly, hybrids with a middle oleic acid content (Mid oleic) have also been developed to maintain an optimal proportion of linoleic acid in the fnal oil composition. Moreover, in 2012, more than 60% of the French cultivated sunflower was high in oleic acid content (CETIOM, 2013).
At the same time, it appeared an increasing interest for some minor components present in sunflower seeds. For example, tocopherols (Vitamin E) and phytosterols are bioactive compounds with health benefits present in the oil fraction. Tocopherols are lipid antioxidants, known to have a protective effect against many diseases. They include cancer, cardiovascular diseases, cell and DNA damage by free radicals, Alzheimer disease and oxidation of LDL (Bramley et al., 2000; Morris et al., 2005; Richey, 2005). The recommended dietary allowance for a-tocopherol in adults is 15 mg/day (U.S. Department of Agriculture, 2011). Phytosterols are plant hormones with anticholesterolemic properties, which have been studied since long ago (Normen et al., 2000; Kritchevsky, 2002; Trautwein et al., 2003; Richelle et al., 2004). Phytosterols are currently used to reduce cholesterol levels in humans' blood. They are added in products such as margarines and yoghurts. Moreover, plant sterols also have other interesting properties like anticancer dietary components (Awad & Fink, 2000), and anti-inflammatory (Bouic et al., 1999) and anti-atherosclerosis properties (Patel & Tompson, 2006).
Sunflower tocopherol content is affected not only by genotype (Velasco et al., 2002; Ayerdi Gotor et al., 2006a) but also environmental conditions (Nolasco et al., 2004; Izquierdo et al., 2007). Its content varies between 300 to 1800 mg/kg of oil. Alpha-tocopherol is the major homologous representing more than 95% of the total tocopherol content. The phytosterol content in sunflower oil also varies among genotypes (Vlahakis & Hazebroek, 2000; Ayerdi Gotor et al., 2006b) and environmental conditions (Roche et al., 2006; Ayerdi Gotor et al., 2008), but less than tocopherols.
The difference in tocopherol content between oleic and classic cultivars has been observed in canola (Gofman & Becker, 2002), peanut breeding lines (Jonnala et al., 2006) and
in sunflower hybrids (Nolasco et al., 2006). However, these studies did not compare the original lines with the converted ones. We found no reference on phytosterols in the literature.
Breeding programs are used mostly to modify yield, fatty acid composition or disease resistance. The objective of this research was to evaluate the influence of breeding for high oleic acid content on the tocopherol and phytosterol contents in sunflower oil.

MATERIALS AND METHODS

Plant material. Isoline pairs of sunflower hybrids and parental classic lines (low oleic acid content and their oleic equivalents -- oleic acid content higher than 75% of the total fatty acids) were cultivated between 2003 and 2006. Plants were generated by the different breeder partners of our project (Table 1).

Table 1. Genetic origin of the pairs used each year obtained from different breeders and locations.
Tabla 1. Origen genético de las parejas usadas cada año obtenidas de diferentes mejoradores y localidades de cultivo.

Chemical analysis of achenes
Solvent extraction of lipids.
The analysis of the total oil content was performed by hexane extraction using a soxhlet extractor apparatus. Fifty grams of dry-freeze achenes were ground with a sample mill (KnifeTec 1095; Foss Tecator AB, Sweden) and placed in cellulose cartridges (Whatmanø = 30 mm, h = 100 mm, Prolabo-Subra, France). Cartridges were subjected to hexane (n-hexane, Prolabo-Subra, France) extraction for 4 hours in six soxhlet-ramp (AFNOR, 1998). Then, the solvent was removed from the extracts under low pressure evaporation with a rotavapor (HS 40 Huber, Bioblock Scientifc, Heildolph). Lipid extracts were weighed and conserved at -18 °C to minimize oxidative reactions before analysis.
Tocopherol determination. Complete separation of all native tocopherols was achieved using a high-performance
liquid chromatography (HPLC) (SpectraPhysics; Thermo Separation Products, USA) and detection was determined with a fluorescence detector (excitation wavelength = 298 nm and emission wavelength = 344 nm; Waters 2475 multi?, France) (ISO, 1997). A normal-phase LiChrosorb Si60 column (250 cm x 4 mm x 5 µm, CIL Cluzeau, France) was used. The mobile phase was hexane/isopropanol (99.7:0.3 v/v HPLC grade, SDS, France) and the solvent fow was 1 mL/min. One gram (precisely weighed: Sartorius Analytical balance Precisa 205 A, Italy) of oil sample was diluted in 25 mL of hexane and 20 µL of this dilution were injected into the HPLC. Tocopherols were identified by comparison of retention times with respective standards (Tocopherol Kit; ChromaDex, USA). Standards were prepared in a methanolic solution (0.1 mg/mL). Standard solutions were checked with an UV spectrophotometer (Hitachi U-1100 photometer). Total tocopherol content was calculated as the sum of a- , ß-, g- andd-tocopherol contents, and they were expressed in mg/kg oil (Ayerdi Gotor et al., 2006a).
Sterol determination. The oil (250 mg) with 1 mL of a freshly prepared solution of betulin (1mg/mL acetone), as internal standard, was saponified with 5 mL of an ethanolic solution of KOH 5% (w/v) during 15 minutes. Then the sample was purified in an aluminium oxide column (pH 9-10, Panreac Química, Spain), and the unsaponifiable fraction was recovered after complete evaporation of solvents. The total and the individual sterol content were analyzed by Gas Chromatography following the international norm (AFNOR, 1999), after a silylation with trimethylsylil (TMS) ester derivatives [1-methylimidazole and N-methyl-N-(trimethylsilyl) heptafluorobutyramide reagent 5:95 v/v Sigma, France] during 15 minutes in a 105 °C oil bath. OneµL of the TMS solutions was injected into a silica capillary column (ZB-5, 30 m x 0.25 mm x 0.25 µm, Phenomenex, France) in the gas chromatography (Fisons GC 8000 series MMFC 800 Multi-function controller, Italy) fitted with a
fame ionization detector. Sterols were identified using the ratio obtained between betulin (Internal standard) and sterol standards (Sigma-Aldrich, France). Sterols were expressed in mg/100 g oil.

Statistical Analysis. The data were statistically analyzed using SPSS V16 (SPSS Inc, USA). Student's t tests were performed for paired samples for each variable and year.

RESULTS AND DISCUSSION

A total of 100 isogenic pairs were cultivated in France in different places between 2003 and 2006. Total tocopherol content varied from 233 to 1016 mg/kg of oil. Alpha-tocopherol was the major homologous representing more than 95% of the total tocopherol content. These values were in accordance with the literature (Velasco et al., 2002; Ayerdi Gotor et al., 2006a; Ayerdi Gotor et al., 2007). Total phytosterol varied from 179 to 467 mg/100g of oil; total phytosterol corresponds to the sum of 7 sterols: ß-sitosterol was the major one (40-50%) followed by campesterol (15-25%) and stigmasterol (15-25%). Several authors reported similar values for phytosterol content and composition in sunflower oil (Vlahakis & Hazebroek, 2000; Ayerdi Gotor et al., 2008; Roche et al., 2010). Mean values of total tocopherol and phytosterol contents for high oleic versus classic parental lines and hybrids are presented in Table 2.

Table 2. Mean values of total tocopherol and phytosterol contents for the parent lines and hybrids as a function of their oleic acid content (oleic or classic) from 2003 to 2006. A Student's t test was made for paired samples. Mean values within the same row with p<0.05 are significantly different.
Tabla 2. Medias del contenido de tocoferoles y fitosteroles totales de las líneas parentales y los híbridos en función de su contenido en ácido oleico (alto oleico y clásico) entre 2003 y 2006. Se efectuó el test de Student para las muestras apareadas. Los valores promedio en una misma fila con p<0,05 son diferentes significativamente.

*df = degree of freedom; sd = standard deviation; a=0.05.
*df = grados de libertad; sd = desviación estándar; a=0,05.

Tocopherols. The comparison of the total tocopherol content between classic versus its oleic isogenic lines showed that there were little differences (Fig. 1). In general, total tocopherol content was higher in classic hybrids or classic parental lines than in their corresponding oleic lines; this difference was statistically significant (p<0.05) in 2003 and 2004, but not during 2005 or 2006 (p>0.05; Table 2).


Fig. 1. Correlation between classic and oleic sunflower for the total tocopherol content (mg/kg oil) during (A) 2003; (B) 2004; (C) 2005; (D) 2006. The 1:1 relationship is shown by the dashed line.
Fig. 1. Correlación entre los girasoles oleicos y clásicos según la cantidad total de tocoferoles (mg/kg de aceite) en (A) 2003; (B) 2004; (C) 2005; (D) 2006. La relación 1:1 se muestra con la línea cortada.

Phytosterol. Figure 2 shows the absence of correlation for the phytosterol content between classic and oleic hybrids and parental lines. Table 2 shows the absence of significant differences (p>0.05) between oleic and classic parental lines or hybrids for their total tocopherol contents in 2003 and 2004.


Fig. 2. Correlation between classic and oleic sunflower for the total phytosterol content (mg/100 g oil) during (A) 2003; (B) 2004. The 1:1 relationship is shown by the dashed line.
Fig. 2. Correlación entre los girasoles oleicos y clásicos según la cantidad total de fitoesteroles (mg/100 g de aceite) en (A) 2003; (B) 2004. La relación 1:1 se muestra con la línea cortada.

CONCLUSIONS

The contents of tocopherol were significantly lower in the oleic hybrids and parental lines than in the classic ones in 2003 and 2004; phytosterol contents did not vary inside the couples studied (oleic-linoleic couples). The tocopherol antioxidant function has been largely reported in oils (Evans et al., 2002; Psomiadou & Tsimidou, 2002; Quiles et al., 2002). It has been proved that the more unsaturations the fatty acid contained, the more easily it was oxidized. Also, the more tocopherols the oil contained, the more resistant it was to oxidations. However, when we observed the quasi isogenic pairs used in this report, there was no difference in tocopherol content, even if there were changes in the fatty acid profile, preserving their nutritional properties. There is no evidence of any efect on the tocopherol and phytosterol contents when the fatty acid composition in sunfower oil is modified by breeding programs. Nevertheless, during seed development, regulatory mechanisms (e.g., enzyme activity) of these components (fatty acids, tocopherols and phytosterols) could be altered by environmental factors (e.g., temperature) to protect the plant against oxidations, altering in this way its final oil composition.

ACKNOWLEDGMENTS

The authors thank Caussade Semences, Maïsadour Semences, Monsanto Dekalb, RAGT-R2n, Soltis, Syngenta Seeds for field experiments, and for providing the sunflower plant material. Financial support was provided by ASEDISSO, ONIDOL (French Oil seeds organization) and Midi-Pyrenees Region. We also thank Cognis-France for their technical support.

REFERENCES

1. AFNOR - Association française de normalisation (1998). European Norm, NF EN ISO 659 october 1998; French norm V 03-905: Oilseeds - Determination of oil content (Reference method). AFNOR. Paris. 14 + 3 p.         [ Links ]

2. AFNOR - Association française de normalisation (1999). European Norm, NF EN ISO 12228 May 1999; French norm T 60-258: Animal and vegetable fats and oils - Determination of individual and total sterols contents - Gas chromatographic method. AFNOR. Paris. 18 p.         [ Links ]

3. Awad, A.B. & C.S. Fink (2000). Phytosterols as anticancer dietary components: Evidence and mechanism of action. Journal of Nutrition 130: 2127-2130.         [ Links ]

4. Ayerdi Gotor, A., M. Berger, F. Labalette, S. Centis, J. Daydé & A. Calmon (2006a). Etude de la variation des teneurs et compositions des composés mineurs dans l'huile de tournesol au cours du développement du capitule : Partie I - Tocophérols. OCL-Oleagineux Corps Gras Lipides 13: 206-212.         [ Links ]

5. Ayerdi Gotor, A., M. Berger, F. Labalette, S. Centis, J. Daydé & A. Calmon (2006b). Variability of minor components in sunflower (Helianthus annuus L.) oil from a multi-local study. In: Benning, C. and Ohlrogge, J. (Eds). 17th International Symposium on Plant Lipids, Vol. I. ISPL2006, East Lansing, MI, USA, pp. 248-252.         [ Links ]

6. Ayerdi Gotor, A., M. Berger, F. Labalette, S. Centis, V. Eychenne, J. Daydé & A. Calmon (2008). Variabilité des teneurs et compositions des composés mineurs dans l'huile de tournesol au cours du développement du capitule. Partie II - Phytostérols. OCL-Oleagineux Corps Gras Lipides 15: 400-406.         [ Links ]

7. Ayerdi Gotor, A., E. Farkas, M. Berger, F. Labalette, S. Centis, J. Daydé & A. Calmon (2007). Determination of tocopherols and phytosterols in sunflower seeds by NIR spectrometry. European Journal of Lipid Science and Technology 109: 525-530.         [ Links ]

8. Benatti, P., G. Peluso, R. Nicolai & M. Calvani (2004). Polyunsaturated fatty acids: Biochemical, nutritional and epigenetic properties. Journal of the American College of Nutrition 23: 281-302.         [ Links ]

9. Bouic, P.J.D., A. Clark, J. Lamprecht, M. Freestone, E.J. Pool, R.W. Liebenberg, D. Kotze & P.P. van Jaarsveld (1999). The effects of ß-sitosterol (BSS) and ß-sitosterol glucoside (BSSG) mixture on selected immune parameters of marathon runners: Inhibition of post marathon immune suppression and inflammation. International Journal of Sports Medicine 20: 258-262.         [ Links ]

10. Bramley, P.M., I. Elmafda, A. Kafatos, F.J. Kelly, Y. Manios, H.E. Roxborough, W. Schuch, P.J.A. Sheehy & K.H. Wagner (2000). Vitamin E. Journal of the Science of Food and Agriculture 80: 913-938.         [ Links ]

11. Brouwer, I.A., M.B. Katan & P.L. Zock (2004). Dietary alpha-linolenic acid is associated with reduced risk of fatal coronary heart disease, but increased prostate cancer risk: a meta-analysis. Journal of Nutrition 134: 919-922.         [ Links ]

12. CETIOM (2013). Tournesol Oléique. Centre technique interprofessionnel des oléagineux et du chanvre Retrieved: July 1, 2013 from: http://www.cetiom.fr/tournesol/cultiver-du-tournesol/varietes/tournesol-oleique/.         [ Links ]

13. Evans, J.C., D.R. Kodali & P.B. Addis (2002). Optimal tocopherol concentrations to inhibit soybean oil oxidation. Journal of the American Oil Chemists Society 79: 47-51.         [ Links ]

14. Goffman, F.D. & H.C. Becker (2002). Genetic variation of tocopherol content in a germplasm collection of Brassica napus L. Euphytica 125: 189-196.         [ Links ]

15. ISO - International Standard Organization (1997). ISO 9936: Animal and vegetable fats and oils - Determination of tocopherols and tocotrienols contents - Method using high-performance liquid chromatography. ISO. Genève. 11 p.         [ Links ]

16. Izquierdo, N.G., S. Mascioli, L.A.N. Aguirrezábal & S.M. Nolasco (2007). Temperature influence during seed filling on tocopherol concentration in a traditional sunflower hybrid. Grasas y Aceites 58: 170-178.         [ Links ]

17. Jonnala, R.S., N.T. Dunford & K.E. Dashiell (2006). Tocopherol, phytosterol and phospholipid compositions of new high oleic peanut cultivars. Journal of Food Composition and Analysis 19: 601-605.         [ Links ]

18. Kritchevsky, D. (2002). Phytosterols in Human Health. In: Mackey, K. (Ed.). Nutritional toxicology. Taylor & Francis, New York, pp. 173-189.         [ Links ]

19. Morris, M., D. Evans, C. Tangney, J. Bienias, R. Wilson, N. Aggarwal & P. Scherr (2005). Relation of the tocopherol forms to incident Alzheimer disease and to cognitive change. American Journal of Clinical Nutrition 81: 508-514.         [ Links ]

20. Nolasco, S.M., L.A.N. Aguirrezábal & G.H. Crapiste (2004). Tocopherol oil concentration in field-grown sunflower is accounted for by oil weight per seed. Journal of the American Oil Chemists Society 81: 1045-1051.         [ Links ]

21. Nolasco, S.M., L.A.N. Aguirrezábal, J. Lúquez & C. Mateo (2006). Variability in oil tocopherol concentration and composition of traditional and high oleic sunflower hybrids (Helianthus annuus L.) in the Pampean region (Argentina). Grasas y Aceites 57: 260-269.         [ Links ]

22. Normen, L., P. Dutta, A. Lia & H. Andersson (2000). Soy sterol esters and beta-sitostanol ester as inhibitors of cholesterol absorption in human small bowel. American Journal of Clinical Nutrition 71: 908-913.         [ Links ]

23. Patel, M.D. & P.D. Thompson (2006). Phytosterols and vascular disease. Atherosclerosis 186: 12-19.         [ Links ]

24. Psomiadou, E. & M. Tsimidou (2002). Stability of Olive Oil. 1.Autoxidation Studies. Journal of Agricultural and Food Chemistry 50: 716-721.         [ Links ]

25. Quiles, J.L., M.C.G. Ramirez-Tortosa, J.A., J.R. Huertas & J. Mataix (2002). Role of vitamin E and phenolic compounds in the antioxidant capacity, measured by ESR, of virgin olive, olive and sunflower oils after frying. Food Chemistry 76: 461-468.         [ Links ]

26. Reaven, P., S. Parthasarathy, B.J. Grasse, E. Miller, D. Steinberg & J.L. Witztum (1993). Effects of oleate-rich and linoleate-rich diets on the susceptibility of low density lipoprotein to oxidative modification in mildly hypercholesterolemic subjects. Journal of Clinical Investigation 91: 668-676.         [ Links ]

27. Richelle, M., M. Enslen, C. Hager, M. Groux, I. Tavazzi, J.P. Godin, A. Berger, S. Metairon, S. Quaile, C. Piguet-Welsch, L. Sagalowicz, H. Green & L.B. Fay (2004). Both free and esterified plant sterols reduce cholesterol absorption and the bioavailability of beta-carotene and alpha-tocopherol in normocholesterolemic humans. American Journal of Clinical Nutrition 80: 171-177.         [ Links ]

28. Richey, R.M. (2005). Vitamin E supplementation, cardiovascular events, and cancer. Jama-Journal of the American Medical Association 294: 425-425.         [ Links ]

29. Roche, J., M. Alignan, A. Bouniols, M. Cerny, Z. Mouloungui, F. Vear & O. Merah (2010). Sterol content in sunflower seeds (Helianthus annuus L.) as affected by genotypes and environmental conditions. Food Chemistry 121: 990-995.         [ Links ]

30. Roche, J., A. Bouniols, Z. Mouloungui, T. Barranco & M. Cerny (2006). Management of environmental crop conditions to produce useful sunflower oil components. European Journal of Lipid Science and Technology 108: 287-297.         [ Links ]

31. Trautwein, E.A., G. Duchateau, Y.G. Lin, S.M. Mel'nikov, H.O.F. Molhuizen & F.Y. Ntanios (2003). Proposed mechanisms of cholesterol-lowering action of plant sterols. European Journal of Lipid Science and Technology 105: 171-185.         [ Links ]

32. U.S. Department of Agriculture (2011). USDA National Nutrient Database for Standard Reference. Retrieved: July 1, 2013 from: http://www.ars.usda.gov/Services/docs.htm?docid 58964.         [ Links ]

33. Velasco, L., J.M. Fernández-Martínez, R. García-Ruiz & J. Domínguez (2002). Genetic and environmental variation for tocopherol content and composition in sunflower commercial hybrids. Journal of Agricultural Science 139: 425-429.         [ Links ]

34. Vlahakis, C. & J. Hazebroek (2000). Phytosterol accumulation in canola, sunflower, and soybean oils: Effects of genetics, planting location, and temperature. Journal of the American Oil Chemists Society 77: 49-53.         [ Links ]

35. Zock, P.L. & M.B. Katan (1998). Linoleic acid intake and cancer risk: a review and meta-analysis. American Journal of Clinical Nutrition 68: 142-153.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons