SciELO - Scientific Electronic Library Online

 
vol.10 issue1Cost-effectiveness of cardiac resynchronization therapy in patients with severe heart failureAlgorithm of pulmonary hypertension treatment: Pulmonary Hypertension Guidelines 2013 Nice. What will change for 2015? author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

  • Have no cited articlesCited by SciELO

Related links

  • Have no similar articlesSimilars in SciELO

Share


Insuficiencia cardíaca

On-line version ISSN 1852-3862

Insuf. card. vol.10 no.1 Ciudad Autónoma de Buenos Aires Mar. 2015

 

CONSENSO

ENMIENDA I
Registro de insuficiencia cardíaca descompensada

Guillermo Cursack, Diego Echazarreta, Juan Pablo Címbaro Canella, Daniela García Brasca, Clara Huerta, Pablo Alvarenga, María Lorena Coronel, Cristian Botta, Pablo Nasca, Eduardo Perna, Sergio V. Perrone, en representación del Comité de Insuficiencia Cardíaca e Hipertensión Pulmonar de la Federación Argentina de Cardiología.

Comité de Insuficiencia Cardíaca e Hipertensión Pulmonar Federación Argentina de Cardiología

Correspondencia: Dr. Guillermo Cursack
Belgrado 2381. CP: S3080. Esperanza. Santa Fe. República Argentina.
Teléfono: +54 3496 464261 E-mail: gcursack@yahoo.com.ar

Recibido: 27/11/2014
Aceptado: 26/02/2015


Resumen

La insuficiencia cardíaca descompensada es una patología que ha incrementado su prevalencia como resultado del aumento de la insuficiencia cardíaca (IC) en el mundo. Un 2% aproximadamente de la población mundial padece esta patología, elevándose a más del 15% en los mayores de 65 años. Las descompensaciones obedecen a diferentes causas según el tipo de tratamiento aplicado, seguimiento y control médico y las características propias del cuadro clínico de ingreso. La ausencia de registros amplios y representativos en Argentina nos ha planteado como desafío la realización de un registro que nos permita incluir a su vez diferentes asociaciones (IC y anemia, IC y embarazo e IC con fracción de eyección preservada y reducida).

Palabras clave: Registro; Insuficiencia cardíaca; Descompensada; Fracción de eyección; Anemia; Embarazo

Summary
ENMIENDA I
Decompensated heart failure registry

Decompensated heart failure is a disease which has increased its prevalence as a result of increased heart failure (HF) in the world. Approximately 2% of the world population suffers from this disease rising to over 15% in those over 65 years. Decompensation occurs due to different causes depending on the type of treatment, monitoring and medical monitoring and clinical characteristics of admission to hospital. The absence of comprehensive and representative registry in Argentina generated challenges us to the realization of a registry enabling us to include in turn different associations (HF and anemia, HF and pregnancy, and HF with preserved and reduced ejection fraction).

Keywords: Registry; Heart failure; Decompensated; Ejection fraction; Anemia; Pregnancy

Resumo
ENMIENDA I
Registro de insuficiência cardíaca descompensada

A insuficiência cardíaca descompensada (ICD) é uma doença que tem aumentado a sua prevalência como resultado do acrescento da insuficiência cardíaca (IC) no mundo. Cerca de 2% da população mundial sofre desta doença chegando a mais de 15% em pessoas com mais de 65 anos. A descompensação ocorre devido a causas diferentes, dependendo do tipo de tratamento, monitoramento e vigilância médica e características clínicas da entrada do hospital. A ausência de registros abrangentes e representativos em Argentina nos levou para o desafio da realização de um registro que nos permita incluir, por sua vez diferentes associações (IC e anemia, IC e gravidez e IC com fração de ejeção preservada e reduzida).

Palavras-chave: Registro; Insuficiência cardíaca; Descompensada; Fração de ejeção; Anemia; Gravidez


Introducción

La insuficiencia cardíaca descompensada (ICD) es una patología que ha incrementado su prevalencia como resultado del aumento de la insuficiencia cardíaca (IC) en el mundo. Un 2% aproximadamente de la población mundial padece esta patología elevándose a más del 15% en los mayores de 65 años. Las descompensaciones obedecen a diferentes causas según el tipo de tratamiento aplicado, seguimiento y control médico y las características propias del cuadro clínico de ingreso. La ausencia de registros amplios y representativos en Argentina nos ha planteado como desafío la realización de uno que nos permita incluir a su vez diferentes asociaciones (IC y anemia, IC y embarazo e IC con fracción de eyección -FE- preservada y reducida).

Hipótesis

La realización de un registro nacional de ICD, mediante la colaboración entre diferentes centros asistenciales, permitirá obtener un perfil epidemiológico más amplio y adecuado de la patología en nuestro país.

Objetivos (Ver anexos)

1- Registrar las características de los pacientes portadores de insuficiencia cardíaca que han padecido un episodio de descompensación.
2- Realizar un seguimiento de 90 días posteriores al alta. Seguimiento opcional a 30, 60 y 365 días.
3- Realizar el sub-registro de los pacientes portadores de IC con FE reducida.
4- Realizar el sub-registro opcional de los pacientes portadores de IC con FE preservada.
5- Realizar el sub-registro opcional de los pacientes portadores de IC y anemia.
6- Realizar el sub-registro opcional de los pacientes portadores de IC y embarazo.

Material y métodos

El registro se desarrollará y coordinará con la conformación de un Comité Científico Coordinador (CCC) integrado por profesionales del Comité de Insuficiencia Cardíaca e Hipertensión Pulmonar de la Federación Argentina de Cardiología e investigadores del mismo Comité. La Coordinación de los mismos estará a cargo del Dr. Guillermo Cursack. Se realizará un registro multicéntrico, observacional, prospectivo ingresando los casos incidentes definidos por aquellos diagnosticados entre el 1º de Diciembre de 2014 y el 1º de Marzo de 2016. El síndrome de ICD puede presentar diferentes formas clínicas, que no siempre son posibles de diferenciar en el momento del ingreso del paciente, pero pueden ser de utilidad en el manejo intra-hospitalario y en la evolución después del alta:
a) Paciente que ingresa al departamento de emergencia por un empeoramiento de su cuadro crónico de IC, constituyendo el 70% de todas las admisiones por ICAD; ya sea, con función sistólica del ventrículo izquierdo (VI) disminuida o preservada.
b) Paciente que ingresa con cuadro de IC de reciente comienzo. Esta situación puede ocurrir después de un infarto agudo de miocardio (IAM), una crisis de elevación rápida de la presión arterial (HTA: hipertensión arterial), y en general se presentan con un VI alterado (constituye el 25% de todos los ingresos).
c) Pacientes con severa y avanzada IC, en general con escasa o poca respuesta al tratamiento, habitualmente, con muy baja fracción de eyección del VI (FEVI), y que suelen ser gatillada por enfermedades asociadas, transitorias o permanentes, como algún episodio de infección broncopulmonar, descompensación de su diabetes, etc., correspondiendo al 5% de las admisiones.

Criterios de inclusión
Pacientes hospitalizados por ICD que cumplan con al menos dos de las categorías de diagnóstico:
1. Signos y síntomas compatibles con un cuadro clínico de ICD.
2. Evidencias de cardiopatía estructural.
3. Respuesta al tratamiento.
4. Necesidad de tratamiento endovenoso con diuréticos, inotrópicos y/o vasodilatadores.

Criterios de exclusión
1. Síndrome coronario agudo en los 3 meses previos (angina inestable, IAM, cirugía de revascularización miocárdica -CRM- o angioplastia transluminal coronaria -ATC-).
2. Enfermedad grave (tumoral, hepática o renal) con pronóstico ominoso a corto plazo.
3. Imposibilidad de realizar un seguimiento adecuado. Se utilizará un soporte informático previsto por el Centro de Teleinformática Médica de la Federación Argentina de Cardiología (CETIFAC) dependiente de la Facultad de Ingeniería/Bioingeniería/CONICET de la Universidad Nacional de Entre Ríos (UNER), que constará de un portal web con usuario y contraseña para cada investigador que integre el registro. Sólo tendrán acceso a los datos ingresados el investigador implicado y el/los coordinadores que sean designados al efecto.

Estadística
Las variables categóricas se expresarán como porcentajes y se compararán con el Test Chi-cuadrado de Pearson. Las variables continuas se presentarán como media y desvío estándar, y se compararán con el Test de Student o el Test U de Mann-Whitney. Las variables de los factores asociados a la mortalidad y las hospitalizaciones se evaluarán en un análisis univariado y multivariado mediante el modelo proporcional de Cox. Se construirán curvas de supervivencia de Kaplan-Meier. Un valor de p<0,05 en todos los análisis se considerará estadísticamente significativo. Todos los análisis estadísticos se realizarán con el programa SPSS 18.0 (SPSS Inc., Chicago, Il).

Comité Científico Coordinador (CCC)
Su rol será conducir la realización del registro en todos sus aspectos, contará con dos grupos de apoyo: el grupo de control de datos y el grupo de publicaciones. Ambos dependerán directamente del CCC.
Integrantes:
Dr. Diego Federico Echazarreta.
Dr. Eduardo Perna.
Dr. Roberto Colque.
Dra. Lilia Lobo Márquez.
Dra. Daniela García Brasca.
Dr. Pablo Nasca.

Grupo de control de datos
Su rol es garantizar la calidad de los datos ingresados en el registro. Realizará el monitoreo de los datos desde los distintos centros participante y se ocupará de analizar si se cumplen los criterios de inclusión/exclusión y el envío en tiempo y forma de los datos. También realizará visitas de auditoría a los centros participantes con el objetivo de entrenamiento y control de la carga o ingreso de los datos. Estará en contacto directo con el centro único de datos para evaluar los datos ingresados por los diferentes centros. Finalmente, brindará opinión experta sobre el diseño del registro en cuanto a tópicos nuevos a explorar.
Integrantes:
Dr. Pablo Címbaro Canella.
Dra. María Lorena Coronel.
Dr. Pablo Alvarenga.
Dr. Guillermo Cursack.
Dr. Cristian Botta.

Política de publicaciones
Los médicos participantes en el registro que desean llevar adelante un proyecto de investigación utilizando las variables incluidas, enviarán el protocolo al CCC. Se analizará cada proyecto considerando el aspecto científico del mismo. Se consultará al asesor estadístico sobre la factibilidad del proyecto. El CCC solicitará al centro de datos que libere al investigador principal del proyecto y los datos requeridos para la realización del proyecto.
Una vez finalizado el proyecto, el investigador principal lo enviará al CCC para su revisión/aprobación. Para ser investigador principal y poder plantear una hipótesis de trabajo, su centro debe cubrir un mínimo de pacientes incluidos. El investigador debe incorporar al proyecto de investigación a los médicos participantes que más pacientes incluyeron. Se considerará autor al investigador que haya realizado el proyecto de investigación y los otros se asignarán de acuerdo al número de pacientes incorporados y su interés en el proyecto.

Centro único de datos (Centro de Teleinformática Médica de FAC: CETIFAC)
Es el área que manejará la base de datos, realizará el mantenimiento del registro y controlará la carga de datos desde los diferentes centros. No brindará información a pedidos personales de los médicos participantes, si no en el marco de un proyecto de investigación que tenga el aval del grupo de publicaciones y del CCC. El centro único de datos reportará sobre el avance del registro al CCC.

Monitor de datos
Será el responsable de controlar la calidad de los datos ingresados, realizando un seguimiento de cada centro integrante del registro y de los investigadores participantes.

Política de propiedad y de publicación
El Registro de ICD es un proyecto multicéntrico. Los médicos que participan en el registro son propietarios de los datos de su propio sitio o centro. Los datos consolidados, señalados anónimos, son propiedad del CCC.

Captura de datos y seguridad
Se utilizará un sistema avanzado de captura electrónico de datos a través de internet. El acceso a la base de datos estará restringido a los usuarios autorizados, quienes se identificaran así mismos con una clave (código) de identificación de usuario única y una contraseña (User ID and Password). Se utilizará una conexión http// para la transferencia segura de los datos. Los mismos serán codificados durante la transferencia en internet y serán almacenados en una base de datos protegida con acceso autorizado.

Confidencialidad de los datos del paciente
La privacidad de los pacientes en el registro será garantizada dado que los nombres o iniciales de los pacientes no se almacenarán en la base de datos. Los pacientes serán identificados por una clave de paciente única. (Al introducir los datos filiatorios del paciente el sistema los manda a un cofre cerrado y genera la clave única del paciente). Cada centro tendrá acceso sólo a los datos de aquellos pacientes bajo su cuidado directo.

Control de calidad de los datos
El uso del sistema avanzado de captura electrónica de datos permitirá chequear la calidad de los datos al introducirlos y verificar los datos faltantes e información incompleta. Todo el manejo de los datos y el análisis ocurrirá en un ambiente computarizado validado. Los datos del registro no serán verificados o confrontados con los documentos de origen.

Consejo de Revisión Institucional (CRI) / Comité de Ética Independiente (CEI)
Dependiendo de las regulaciones locales y las políticas de la institución del médico participante, el médico puede tener que someter el registro del protocolo, una forma de la carta de autorización del paciente y otra de información relevante al CRI/CEI. En tal caso, la aprobación del CRI/CEI debe ser obtenida antes de introducir los datos a la base de datos. La información/aprobación del CRI debe estar documentada en una carta dirigida al médico participante, identificando claramente el nombre del registro, los documentos revisados y la fecha de aprobación.

Autorización del paciente
De cada paciente se obtendrá la autorización apropiada (consentimiento adjunto), pues así lo requieren las políticas institucionales o las regulaciones de privacidad nacional o estatal que se relacionan a la información médica. Lo anterior debe hacerse antes de introducir datos al registro de ICD.

Retiro del paciente
La participación del paciente es voluntaria. En cualquier momento, el paciente puede retirar su consentimiento para participar, sin que ello afecte su atención médica o tratamiento.

Retiro de un investigador o centro
El reglamento contempla el retiro voluntario o no de un investigador o de un centro. Los pacientes que fueron incluidos por ellos al registro permanecerán en el mismo.

Anexos
A.- Algoritmo del Registro de ICD.
B.- Identificación del Registro de ICD.
C.- Registro de ICD.
D.- Registro de ICD.
E.- Registro de IC y Embarazo.
F.- Registro de IC y Anemia
A.- ALGORITMO del REGISTRO de INSUFICIENCIA CARDIACA DESCOMPENSADA






Referencias bibliográficas

1. Flammang D, Sebastien P, Bouvrain Y. Hemodynamic study of dopamine used in chronic heart failures and in cardiogenic shock as a complication of acute myocardial infarct. Ann Anesthesiol Fr 1975; 16(9): 669-72.         [ Links ]

2. Pugliese C, Lessa I, Santos Filho A. Survival of decompensated chronic Chagas' myocardiopathy. Rev Inst Med Trop Sao Paulo 1976; 18(3): 191-201.         [ Links ]

3. De Freitas LA, de Freitas NR, Andrade ZA. Hyperbilirubinemia in patients with decompensated chronic Chagas cardiomyopathy. Mem Inst Oswaldo Cruz 1983; 78(2): 215-22.         [ Links ]

4. Rocha A, et al. Chronic Chagas' cardiopathy causing congestive heart failure in childhood: a clinical and histopathological study of a case with emphasis on the lesions of the intracardiac conduction and autonomic nervous systems. Rev Soc Bras Med Trop 1993; 26(4): 243-9.         [ Links ]

5. Ander DS, et al. Undetected cardiogenic shock in patients with congestive heart failure presenting to the emergency department. Am J Cardiol 1998; 82(7): 888-91.         [ Links ]

6. Delle Karth G, et al. Hemodynamic effects of a continuous infusion of levosimendan in critically ill patients with cardiogenic shock requiring catecholamines. Acta Anaesthesiol Scand 2003; 47(10): 1251-6.         [ Links ]

7. Boerrigter G, Burnett JC Jr. Cardiorenal syndrome in decompensated heart failure: prognostic and therapeutic implications. Curr Heart Fail Rep 2004; 1(3): 113-20.         [ Links ]

8. Heywood JT. The cardiorenal syndrome: lessons from the ADHERE database and treatment options. Heart Fail Rev 2004; 9(3): 195-201.         [ Links ]

9. Burkhoff D, et al. A randomized multicenter clinical study to evaluate the safety and efficacy of the TandemHeart percutaneous ventricular assist device versus conventional therapy with intraaortic balloon pumping for treatment of cardiogenic shock. Am Heart J 2006; 152(3): 469 e1-8.         [ Links ]

10. Francis G. Acute decompensated heart failure: the cardiorenal syndrome. Cleve Clin J Med 2006; 73 Suppl 2: S8-13; discussion S30-3.         [ Links ]

11. Owan TE, et al. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med 2006; 355(3): 251-9.         [ Links ]

12. Danciu SC, et al. Comparison of six-month outcomes and hospitalization rates in heart failure patients with and without preserved left ventricular ejection fraction and with and without intraventricular conduction defect. Am J Cardiol 2006; 97(2): 256-9.         [ Links ]

13. Tilling L, Colin Forfar J. Cinacalcet-associated cardiogenic shock in a patient with cardiomyopathy. Clin Ther 2007; 29(2): 352-6.         [ Links ]

14. Grancelli HO. Disease management programs in heart failure. Findings of the DIAL study. Rev Esp Cardiol 2007; 60 Suppl 3: 15-22.         [ Links ]

15. Moreira LF, et al. Left ventricular circulatory support as bridge to heart transplantation in Chagas' disease cardiomyopathy. Artif Organs 2007; 31(4): 253-8.         [ Links ]

16. Kukla P, et al. Myopericarditis complicated with cardiogenic shock mimicking acute coronary syndrome with ST elevation in a patient with hyperthyroidism and diabetes mellitus. Kardiol Pol, 2008; 66(9): 982-6; discussion 986.         [ Links ]

17. Dohadwala MM, Givertz MM. Role of adenosine antagonism in the cardiorenal syndrome. Cardiovasc Ther 2008; 26(4): 276-86.         [ Links ]

18. Ronco C, et al. Cardiorenal syndrome. J Am Coll Cardiol 2008; 52(19): 1527-39.         [ Links ]

19. Liu PP. Cardiorenal syndrome in heart failure: a cardiologist's perspective. Can J Cardiol 2008; 24 Suppl B: 25B-9B.         [ Links ]

20. Price JF, et al. Worsening renal function in children hospitalized with decompensated heart failure: evidence for a pediatric cardiorenal syndrome? Pediatr Crit Care Med 2008; 9(3): 279-84.         [ Links ]

21. Liang KV, et al. Acute decompensated heart failure and the cardiorenal syndrome. Crit Care Med 2008; 36(1 Suppl): S75-88.         [ Links ]

22. Paul B, et al. Diagnostic and prognostic significance of plasma N-terminal-pro-brain natriuretic peptide in decompensated heart failure with preserved ejection fraction. Heart Lung Circ 2008; 17(6): 497-501.         [ Links ]

23. Fonarow GC, et al. Influence of beta-blocker continuation or withdrawal on outcomes in patients hospitalized with heart failure: findings from the OPTIMIZE-HF program. J Am Coll Cardiol 2008; 52(3): 190-9.         [ Links ]

24. Young JB, et al. Relation of low hemoglobin and anemia to morbidity and mortality in patients hospitalized with heart failure (insight from the OPTIMIZE-HF registry). Am J Cardiol 2008; 101(2): 223-30.         [ Links ]

25. Forfia R, et al. Hyponatremia predicts right heart failure and poor survival in pulmonary arterial hypertension. Am J Respir Crit Care Med 2008. 177(12): 1364-9.         [ Links ]

26. Tsagalou E, et al. Hemodynamic effects of levosimendan in acute myocardial infarction complicated by cardiogenic shock and high systemic vascular resistance. Acute Card Care 2009; 11(2): 99-106.         [ Links ]

27. Sarraf M, Masoumi A, Schrier RW. Cardiorenal syndrome in acute decompensated heart failure. Clin J Am Soc Nephrol 2009; 4(12): 2013-26.         [ Links ]

28. Shah RV, Givertz MM. Managing acute renal failure in patients with acute decompensated heart failure: the cardiorenal syndrome. Curr Heart Fail Rep 2009; 6(3): 176-81.         [ Links ]

29. Ronco F, Ronco C. Cardiorenal syndrome, current understanding. Recenti Prog Med 2009; 100(4): 202-13.         [ Links ]

30. Ronco C, et al. The cardiorenal syndrome. Blood Purif 2009; 27(1): 114-26.         [ Links ]

31. Miller AB, Pina IL. Understanding heart failure with preserved ejection fraction: clinical importance and future outlook. Congest Heart Fail 2009; 15(4): 186-92.         [ Links ]

32. de March Ronsoni R, Feijó RV Jr, Melo LH, Schwingel FL, Filho WJ, de Albernaz Muniz RZ, Weber S, Moro A. The use of Levosimendan for myocardiopathy due to acute Chagas' disease. Int J Cardiol 2009; 136(2): 233-5.         [ Links ]

33. Buerke M, et al. Therapeutic strategies in acute decompensated heart failure and cardiogenic shock. Internist 2010; 51(8): 963-74.         [ Links ]

34. Diller G, et al. Predictors of morbidity and mortality in contemporary Fontan patients: results from a multicenter study including cardiopulmonary exercise testing in 321 patients. Eur Heart J 2010; 31(24): 3073-83.         [ Links ]

35. Koniari K, et al. Therapeutic options for the management of the cardiorenal syndrome. Int J Nephrol 2010; 2011: 194910.         [ Links ]

36. Shrestha K, Tang WH. Cardiorenal syndrome: diagnosis, treatment, and clinical outcomes. Curr Heart Fail Rep 2010; 7(4): 167-74.         [ Links ]

37. Tang WH, Mullens W. Cardiorenal syndrome in decompensated heart failure. Heart 2010; 96(4): 255-60.         [ Links ]

38. Maurer M, et al. Plasma homocysteine and cardiovascular risk in heart failure with and without cardiorenal syndrome. Int J Cardiol 2010; 141(1): 32-8.         [ Links ]

39. Goldraich L, et al. Clinical predictors of preserved left ventricular ejection fraction in decompensated heart failure. Arq Bras Cardiol 2010; 94(3): 364-71, 385-93.         [ Links ]

40. Farasat SM, et al. Effect of Beta-blocker therapy on rehospitalization rates in women versus men with heart failure and preserved ejection fraction. Am J Cardiol 2010; 105(2): 229- 34.         [ Links ]

41. Sato N, et al. Acute decompensated heart failure syndromes (ATTEND) registry. A prospective observational multicenter cohort study: rationale, design, and preliminary data. Am Heart J 2010; 159(6): 949-955 e1.         [ Links ]

42. Kociol RD, et al. Generalizability and longitudinal outcomes of a national heart failure clinical registry: Comparison of Acute Decompensated Heart Failure National Registry (ADHERE) and non-ADHERE Medicare beneficiaries. Am Heart J 2010. 160(5): 885-92.         [ Links ]

43. Cardoso J, et al, Chagas cardiomyopathy: prognosis in clinical and hemodynamic profile C. Arq Bras Cardiol 2010; 95(4): 518-23.         [ Links ]

44. Dandamudi S, Chen HH. Evolving treatment strategies for management of cardiorenal syndrome. Curr Treat Options Cardiovasc Med 2011; 13(6): 556-69.         [ Links ]

45. Viswanathan G, Gilbert S. The cardiorenal syndrome: making the connection. Int J Nephrol 2011; 2011: 283137.         [ Links ]

46. West R, et al. Characterization of heart failure patients with preserved ejection fraction: a comparison between ADHERE-US registry and ADHERE-International registry. Eur J Heart Fail 2011; 13(9): 945-52.         [ Links ]

47. Marechaux S, et al. Prognostic importance of comorbidities in heart failure with preserved left ventricular ejection fraction. Heart Vessels 2011; 26(3): 313-20.         [ Links ]

48. Melo EF, Melo RM, Aiello VD. Case 6 / 2011: decompensated heart failure in man of 65 years of age, suffering from cardiomyopathy of Chagas disease and coronary artery disease. Arq Bras Cardiol 2011; 97(6): e121-7.         [ Links ]

49. McClanahan A, Guglin M. Right ventricular dysfunction compromises accuracy of echocardiographic diagnosis of pulmonary hypertension in heart failure. J Card Fail 2011; 17(12): 1023-7.         [ Links ]

50. Aronson D, et al. Relationship between reactive pulmonary hypertension and mortality in patients with acute decompensated heart failure. Circ Heart Fail 2011. 4(5): 644-50.         [ Links ]

51. Trullas JC, et al. Paradox of obesity in heart failure: results from the Spanish RICA Registry. Med Clin 2011; 137(15): 671-7.         [ Links ]

52. Spinar J, et al. Baseline characteristics and hospital mortality in the Acute Heart Failure Database (AHEAD) Main registry. Crit Care 2011; 15(6): R291.         [ Links ]

53. Mebazaa A, et al. Short-term survival by treatment among patients hospitalized with acute heart failure: the global ALARM-HF registry using propensity scoring methods. Intensive Care Med 2011; 37(2): 290-301.         [ Links ]

54. Kociol RD, et al. Pharmacologic prophylaxis for venous thromboembolism and 30-day outcomes among older patients hospitalized with heart failure: an analysis from the ADHERE national registry linked to Medicare claims. Clin Cardiol 2011; 34(11): 682-8.         [ Links ]

55. Chioncel O, et al. The Romanian Acute Heart Failure Syndromes (RO-AHFS) registry. Am Heart J 2011. 162(1): 142-53 e1.         [ Links ]

56. Aronson D. Cardiorenal syndrome in acute decompensated heart failure. Expert Rev Cardiovasc Ther 2012; 10(2): 177-89.         [ Links ]

57. Wynne J, Narveson SY, Littmann L. Cardiorenal syndrome. Heart Lung 2012; 41(2): 157-60.         [ Links ]

58. Kelesidis I, et al. The effect of nesiritide on renal function and other clinical parameters in patients with decompensated heart failure and preserved ejection fraction. Congest Heart Fail 2012; 18(3): 158-64.         [ Links ]

59. Kaneko H, et al. Role of cardiopulmonary dysfunction and left atrial remodeling in development of acute decompensated heart failure in chronic heart failure with preserved left ventricular ejection fraction. J Cardiol 2012; 59(3): 359-65.         [ Links ]

60. Hsich EM, et al. Sex differences in in-hospital mortality in acute decompensated heart failure with reduced and preserved ejection fraction. Am Heart J 2012; 163(3): 430-7, 437 e1-3.         [ Links ]

61. Shao Z, et al. Pulmonary hypertension associated with advanced systolic heart failure: dysregulated arginine metabolism and importance of compensatory dimethylarginine dimethylaminohydrolase-1. J Am Coll Cardiol 2012; 59(13): 1150-8.         [ Links ]

62. Malek F, et al. Uric acid, allopurinol therapy, and mortality in patients with acute heart failure-results of the Acute Heart Failure Database registry. J Crit Care 2012; 27(6): 737 e11-24.         [ Links ]

63. Kociol RD, et al, B-type natriuretic peptide level and postdischarge thrombotic events in older patients hospitalized with heart failure: insights from the Acute Decompensated Heart Failure National Registry. Am Heart J 2012; 163(6): 994-1001.         [ Links ]

64. Ezekowitz JA, et al. Acute heart failure: perspectives from a randomized trial and a simultaneous registry. Circ Heart Fail 2012; 5(6): 735-41.         [ Links ]

65. Morita Y, et al. Use of carperitide infusion for acutely decompensated heart failure. Crit Care 2012; 16(1): 406.         [ Links ]

66. Furosemide in acute decompensated heart failure. Prescrire Int 2012; 21(133): 303.         [ Links ]

67. Ahmed M, Hill J. A rational approach to assess volume status in patients with decompensated heart failure. Curr Heart Fail Rep 2012. 9(2): 139-47.         [ Links ]

68. Aispuru GR, et al. Thrombotic biomarkers and left ventricle characteristics as short-term predictors of thrombotic events in patients hospitalized for acute decompensated heart failure. Eur J Intern Med 2012. 23(6): 545-51.         [ Links ]

69. Akturk E, et al. Assessment of left ventricular volume and functions by real-time three-dimensional echocardiography in patients with compensated and decompensated heart failure. Turk Kardiyol Dern Ars 2012. 40(5): 419-26.         [ Links ]

70. Andersen NM, et al. Recovery from decompensated heart failure is associated with a distinct, phase-dependent gene expression profile. J Surg Res 2012; 178(1): 72-80.         [ Links ]

71. Ang SH, Andrus P. Lung ultrasound in the management of acute decompensated heart failure. Curr Cardiol Rev 2012; 8(2): 123- 36.         [ Links ]

72. Arnold JM, Porepa L. Acute decompensated heart failure: the quest to live longer and feel better: can we have it all? J Am Coll Cardiol 2012; 59(16): 1449-51.         [ Links ]

73. Atherton JJ, et al. Patient characteristics from a regional multicenter database of acute decompensated heart failure in Asia Pacific (ADHERE International-Asia Pacific). J Card Fail 2012; 18(1): 82-8.         [ Links ]

74. Badawy SS, Fahmy A. Efficacy and cardiovascular tolerability of continuous veno-venous hemodiafiltration in acute decompensated heart failure: a randomized comparative study. J Crit Care 2012; 27(1): 106 e7-13.         [ Links ]

75. Barros LC, et al. Acute kidney injury in hospitalized patients with decompensated heart failure. J Bras Nefrol 2012; 34(2): 122-9.         [ Links ]

76. Bart BA, et al. Ultrafiltration in decompensated heart failure with cardiorenal syndrome. N Engl J Med 2012; 367(24): 2296-304.         [ Links ]

77. Bart BA, et al. Cardiorenal rescue study in acute decompensated heart failure: rationale and design of CARRESS-HF, for the Heart Failure Clinical Research Network. J Card Fail 2012. 18(3): 176- 82.         [ Links ]

78. Bernardo WM, Moreira FT. Does nesiritide reduce mortality and readmission in decompensated heart failure? Rev Assoc Med Bras 2012; 58(2): 133-4.         [ Links ]

79. Bernardo WM, Moreira FT, Does nesiritide reduce dyspnea in decompensated heart failure?. Rev Assoc Med Bras 2012; 58(1): 11-3.         [ Links ]

80. Bishu K, et al. Biomarkers in acutely decompensated heart failure with preserved or reduced ejection fraction. Am Heart J 2012; 164(5): 763-770 e3.         [ Links ]

81. Brancalhao EO, et al. Haemodynamic effects of aliskiren in decompensated severe heart failure. J Renin Angiotensin Aldosterone Syst 2012. 13(1): 128-32.         [ Links ]

82. Brown JR, Gottlieb SS. Acute decompensated heart failure. Cardiol Clin 2012; 30(4): 665-71.         [ Links ]

83. Campbell T, Ryan J. Diuretic dosing in acute decompensated heart failure: lessons from DOSE. Curr Heart Fail Rep 2012; 9(3): 260-5.         [ Links ]

84. Cetin M, et al. The predictive value of QRS duration in response to levosimendan therapy in patients with decompensated heart failure. Acta Cardiol 2012; 67(3): 317-23.         [ Links ]

85. Chen CY, et al. Serum blood urea nitrogen and plasma brain natriuretic Peptide and low diastolic blood pressure predict cardiovascular morbidity and mortality following discharge in acute decompensated heart failure patients. Circ J 2012; 76(10): 2372-9.         [ Links ]

86. Correia LC, et al. Prevalence and predictors of pulmonary embolism in patients with acutely decompensated heart failure. Arq Bras Cardiol 2012; 98(2): 120-5.         [ Links ]

87. Dandamudi S, Chen HH. The ASCEND-HF trial: an acute study of clinical effectiveness of nesiritide and decompensated heart failure. Expert Rev Cardiovasc Ther 2012; 10(5): 557-63.         [ Links ]

88. de Araujo BS, et al. Trepopnea may explain right-sided pleural effusion in patients with decompensated heart failure. Am J Emerg Med 2012; 30(6): 925-931 e2.         [ Links ]

89. Dev S, et al. Reduction in body weight but worsening renal function with late ultrafiltration for treatment of acute decompensated heart failure. Cardiology 2012; 123(3): 145-53.         [ Links ]

90. Dominguez-Rodriguez A, et al. Usefulness of serum neopterin levels in acute decompensated heart failure to predict renal dysfunction. Biomarkers 2012. 17(2): 134-9.         [ Links ]

91. Dupont M, et al. Lack of significant renal tubular injury despite acute kidney injury in acute decompensated heart failure. Eur J Heart Fail 2012; 14(6): 597-604.         [ Links ]

92. Dusemund F, et al. Multidisciplinary Assessment to Personalize Length of Stay in Acute Decompensated Heart Failure (OPTIMA II ADHF). J Clin Med Res 2012; 4(6): 402-9.         [ Links ]

93. Ezekowitz JA, et al. Assessment of dyspnea in acute decompensated heart failure: insights from ASCEND-HF (Acute Study of Clinical Effectiveness of Nesiritide in Decompensated Heart Failure) on the contributions of peak expiratory flow. J Am Coll Cardiol 2012; 59(16): 1441-8.         [ Links ]

94. Felker GM, et al. Troponin I in acute decompensated heart failure: insights from the ASCEND-HF study. Eur J Heart Fail 2012; 14(11): 1257-64.         [ Links ]

95. Felker GM, Mentz RJ. Diuretics and ultrafiltration in acute decompensated heart failure. J Am Coll Cardiol 2012; 59(24): 2145-53.         [ Links ]

96. Gallet R, et al. Prognosis value of central venous oxygen saturation in acute decompensated heart failure. Arch Cardiovasc Dis 2012; 105(1): 5-12.         [ Links ]

97. Gassanov N, et al. Natriuretic peptides in therapy for decompensated heart failure. Eur J Clin Pharmacol 2012; 68(3): 223-30.         [ Links ]

98. Giglioli C, et al. Levosimendan produces an additional clinical and hemodynamic benefit in patients with decompensated heart failure successfully submitted to a fluid removal treatment. Congest Heart Fail 2012; 18(1): 47-53.         [ Links ]

99. Greenberg B. Acute decompensated heart failure - treatments and challenges. Circ J 2012; 76(3): 532-43.         [ Links ]

100. Guglin M, et al. Predictors of right ventricular systolic dysfunction in compensated and decompensated heart failure. Congest Heart Fail 2012; 18(5): 278-83.         [ Links ]

101. Gupta A, et al. Obesity and the response to intensified diuretic treatment in decompensated heart failure: a DOSE trial substudy. J Card Fail 2012; 18(11): 837-44.         [ Links ]

102. Hanna MA, et al. Extracorporeal ultrafiltration vs. conventional diuretic therapy in advanced decompensated heart failure. Congest Heart Fail 2012; 18(1): 54-63.         [ Links ]

103. Hogan CJ, et al. Sublingual tissue perfusion improves during emergency treatment of acute decompensated heart failure. Am J Emerg Med 2012; 30(6): 872-80.         [ Links ]

104. Hou ZQ, et al. Effect of Levosimendan on Estimated Glomerular Filtration Rate in Hospitalized Patients with Decompensated Heart Failure and Renal Dysfunction. Cardiovasc Ther 2012; 31(2).         [ Links ]

105. Hsiao J, Motta M, Wyer P. Validating the acute heart failure index for patients presenting to the emergency department with decompensated heart failure. Emerg Med J 2012; 29(12): e5.         [ Links ]

106. Kazory A, Bellamy FB, Ross EA. Ultrafiltration for acute decompensated heart failure: financial implications. Int J Cardiol 2012; 154(3): 246-9.         [ Links ]

107. Kindermann I, et al. Cognitive function in patients with decompensated heart failure: the Cognitive Impairment in Heart Failure (CogImpair-HF) study. Eur J Heart Fail 2012; 14(4): 404-13.         [ Links ]

108. Kobayashi S, et al. Low-dose beta-blocker in combination with milrinone safely improves cardiac function and eliminates pulsus alternans in patients with acute decompensated heart failure. Circ J 2012; 76(7): 1646-53.         [ Links ]

109. Koniari K, et al. Treating volume overload in acutely decompensated heart failure: established and novel therapeutic approaches. Eur Heart J Acute Cardiovasc Care 2012; 1(3): 256-68.         [ Links ]

110. Konishi M, et al. Progression of hyponatremia is associated with increased cardiac mortality in patients hospitalized for acute decompensated heart failure. J Card Fail 2012. 18(8): 620-5.         [ Links ]

111. Kozdag G, et al, Aspirin, clopidogrel, and warfarin use and outcomes in a cohort of 580 patients discharged after hospitalization for decompensated heart failure. Heart Vessels, 2012. 27(6): 568-75.         [ Links ]

112. Kransdorf EP, Kittleson MM. Dissecting the “CHF admission”: an evidence-based review of the evaluation and management of acute decompensated heart failure for the hospitalist. J Hosp Med 2012; 7(5): 439-45.

113. Lima MV, et al. Continuous noninvasive hemodynamic monitoring in decompensated heart failure. Arq Bras Cardiol 2012; 99(3): 843-7.         [ Links ]

114. Madias JE. Letter by Madias regarding article, “Crescendo in depolarization and repolarization heterogeneity heralds development of ventricular tachycardia in hospitalized patients with decompensated heart failure”. Circ Arrhythm Electrophysiol 2012; 5(3): e78; author reply e79.

115. Malfatto G, et al. Transthoracic impedance accurately estimates pulmonary wedge pressure in patients with decompensated chronic heart failure. Congest Heart Fail 2012; 18(1): 25-31.         [ Links ]

116. Malhotra K, et al. Decompensated high-output congestive heart failure in a patient with AVF and the role of right heart catheterization: a case study. Hemodial Int 2012; 16 (Suppl 1): S58-61.         [ Links ]

117. Manzano-Fernandez S, et al. Serial monitoring of soluble interleukin family member ST2 in patients with acutely decompensated heart failure. Cardiology 2012; 122(3): 158-66.         [ Links ]

118. Marik PE, Flemmer M. Narrative review: the management of acute decompensated heart failure. J Intensive Care Med, 2012; 27(6): 343-53.         [ Links ]

119. Marti C, et al. Medical therapy for acute decompensated heart failure: what recent clinical trials have taught us about diuretics and vasodilators. Curr Heart Fail Rep, 2012. 9(1): 1-7.         [ Links ]

120. Massari F, et al. The glucocorticoid in acute decompensated heart failure: Dr Jekyll or Mr Hyde? Am J Emerg Med 2012; 30(3): 517 e5-10.         [ Links ]

121. Mebazaa A, et al. Unbiased plasma proteomics for novel diagnostic biomarkers in cardiovascular disease: identification of quiescin Q6 as a candidate biomarker of acutely decompensated heart failure. Eur Heart J 2012; 33(18): 2317-24.         [ Links ]

122. Mulla CM, Marik PE. Pheochromocytoma presenting as acute decompensated heart failure reversed with medical therapy. BMJ Case Rep 2012; 2012.         [ Links ]

123. Nakamura, et al. Comparison of the incidence of acute decompensated heart failure before and after the major tsunami in Northeast Japan. Am J Cardiol 2012; 110(12): 1856-60.         [ Links ]

124. Nearing BD, et al. Crescendo in depolarization and repolarization heterogeneity heralds development of ventricular tachycardia in hospitalized patients with decompensated heart failure. Circ Arrhythm Electrophysiol 2012; 5(1): 84-90.         [ Links ]

125. Nevzorov R, et al. Effect of beta blocker therapy on survival of patients with heart failure and preserved systolic function following hospitalization with acute decompensated heart failure. Eur J Intern Med 2012; 23(4): 374-8.         [ Links ]

126. O'Brien TM, et al. Algorithm-based assessment of target weight removal in acute decompensated heart failure. Congest Heart Fail 2012; 18(1): 43-6.         [ Links ]

127. Oh J, et al. Prognostic value of change in red cell distribution width 1 month after discharge in acute decompensated heart failure patients. Circ J 2012; 76(1): 109-16.         [ Links ]

128. Paksoy F, et al. The effect of levosimendan and dobutamine treatment on QT dispersion in patients with decompensated heart failure: a prospective study. Anadolu Kardiyol Derg 2012; 12(1): 16-22.         [ Links ]

129. Paraskevaidis IA, et al. Dobutamine-induced changes of left atrial two-dimensional deformation predict clinical and neurohumoral improvement after levosimendan treatment in patients with acutely decompensated chronic heart failure. Int J Cardiol 2012; 157(1): 31-7.         [ Links ]

130. Parrinello G, et al. Troponin I release after intravenous treatment with high furosemide doses plus hypertonic saline solution in decompensated heart failure trial (Tra-HSS-Fur). Am Heart J 2012; 164(3): 351-7.         [ Links ]

131. Patarroyo M, et al. Cardiorenal outcomes after slow continuous ultrafiltration therapy in refractory patients with advanced decompensated heart failure. J Am Coll Cardiol 2012; 60(19): 1906-12.         [ Links ]

132. Proietti R, Mafrici A, Spodick DH. Dynamic variations of P-wave duration in a patient with acute decompensated congestive heart failure. Cardiol J 2012; 19(1): 95-7.         [ Links ]

133. Ramasubbu K, et al. Echocardiographic changes during treatment of acute decompensated heart failure: insights from the ESCAPE trial. J Card Fail 2012; 18(10): 792-8.         [ Links ]

134. Ran HH, et al. Imatinib-induced decompensated heart failure in an elderly patient with chronic myeloid leukemia: case report and literature review. J Geriatr Cardiol 2012; 9(4): 411-4.         [ Links ]

135. Ribeiro WN, Yamada AT, Benvenuti LA. Case 2 for index purposes: a 50 year old and past heavy drinker man admitted to treat decompensated heart failure. Arq Bras Cardiol 2012; 98(6): e87-95.         [ Links ]

136. Rodriguez-Pascual C, et al. Comprehensive geriatric assessment and hospital mortality among older adults with decompensated heart failure. Am Heart J 2012; 164(5): 756-62.         [ Links ]

137. Ronco C, Cicoira M, McCullough PA. Cardiorenal syndrome type 1: pathophysiological crosstalk leading to combined heart and kidney dysfunction in the setting of acutely decompensated heart failure. J Am Coll Cardiol 2012; 60(12): 1031-42.         [ Links ]

138. Saremi A, Gopal D, Maisel AS. Brain natriuretic peptide-guided therapy in the inpatient management of decompensated heart failure. Expert Rev Cardiovasc Ther 2012; 10(2): 191-203.         [ Links ]

139. Schwartzenberg S, et al. The “obesity paradox”: does it persist among Israeli patients with decompensated heart failure? A subanalysis of the Heart Failure Survey in Israel (HFSIS). J Card Fail 2012; 18(1): 62-7.

140. Scrutinio D, et al. Amino-terminal pro-B-type natriuretic peptide for risk prediction in acute decompensated heart failure. Congest Heart Fail 2012; 18(6): 308-14.         [ Links ]

141. Scrutinio D, et al. Inpatient cardiac rehabilitation soon after hospitalization for acute decompensated heart failure: a propensity score study. J Cardiopulm Rehabil Prev 2012; 32(2): 71-7.         [ Links ]

142. Shchekochikhin D, Lindenfeld J. What have we learned about loop diuretics in acute decompensated heart failure? The DOSE trial. Curr Cardiol Rep 2012; 14(3): 251-3.         [ Links ]

143. Shrestha K, et al. Relation of systemic and urinary neutrophil gelatinase-associated lipocalin levels to different aspects of impaired renal function in patients with acute decompensated heart failure. Am J Cardiol 2012; 110(9): 1329-35.         [ Links ]

144. Speranza L, et al. BNP and iNOS in decompensated chronic heart failure: a linear correlation. Front Biosci (Elite Ed) 2012; 4: 1255-62.         [ Links ]

145. Stenner E, et al. Comparative evaluation of B-type natriuretic peptide and mid-regional pro-A-type natriuretic peptide changes from admission to discharge in prognosis of acute decompensated heart failure patients. Clin Lab 2012; 58(5-6): 585-9.         [ Links ]

146. Summers RL, Sterling S. Early emergency management of acute decompensated heart failure. Curr Opin Crit Care 2012; 18(4): 301-7.         [ Links ]

147. Tanindi A, et al. Heart rate variability in patients hospitalized for decompensated diastolic heart failure at admission and after clinical stabilization. Future Cardiol 2012; 8(3): 473-82.         [ Links ]

148. Taylor DM, et al, A comparison of precipitants and mortality when acute decompensated heart failure occurs in the community and hospital settings. Heart Lung Circ 2012; 21(8): 439-43.         [ Links ]

149. Whellan DJ, et al. Change in intrathoracic impedance measures during acute decompensated heart failure admission: results from the Diagnostic Data for Discharge in Heart Failure Patients (3D-HF) Pilot Study. J Card Fail 2012; 18(2): 107-12.         [ Links ]

150. Zafrir B, Amir O. Beta blocker therapy, decompensated heart failure, and inotropic interactions: current perspectives. Isr Med Assoc J 2012; 14(3): 184-9.         [ Links ]

151. Zhang YH, et al. Hemodynamic and efficacies of domestic levosimendan versus dobutamine in patients with acute decompensated heart failure. Zhonghua Yi Xue Za Zhi 2012; 92(8): 555-8.         [ Links ]

152. Zhang YH, et al. Comparison on efficacy and safety between domestic levosimendan versus dobutamine for patients with acute decompensated heart failure. Zhonghua Xin Xue Guan Bing Za Zhi 2012; 40(2): 153-6.         [ Links ]

153. Zhou Q, et al. Acute and acute-on-chronic kidney injury of patients with decompensated heart failure: impact on outcomes. BMC Nephrol 2012; 13: 51.         [ Links ]

154. Sato N, et al. Clinical features and outcome in hospitalized heart failure in Japan (from the ATTEND Registry). Circ J 2013; 77(4): 944-51.         [ Links ]

155. Sato N, et al. Hyponatremia and in-hospital mortality in patients admitted for heart failure (from the ATTEND registry). Am J Cardiol 2013; 111(7): 1019-25.         [ Links ]

156. Lin GM, et al. B-type natriuretic peptide level and postdischarge thrombotic events in older patients hospitalized with heart failure: insights from the Acute Decompensated Heart Failure National Registry. Am Heart J 2013; 165(1): e1.         [ Links ]

157. Abuhab A, et al. Chagas' cardiomyopathy: the economic burden of an expensive and neglected disease. Int J Cardiol 2013; 168(3): 2375-80.         [ Links ]

158. Aliti GB, et al. Aggressive fluid and sodium restriction in acute decompensated heart failure: a randomized clinical trial. JAMA Intern Med 2013; 173(12): 1058-64.         [ Links ]

159. Aronson D, et al. Fluid loss, venous congestion, and worsening

renal function in acute decompensated heart failure. Eur J Heart Fail 2013; 15(6): 637-43.

160. Aronson D, et al. Pulmonary hypertension, right ventricular function, and clinical outcome in acute decompensated heart failure. J Card Fail 2013; 19(10): 665-71.         [ Links ]

161. Austin J, et al. Assessing parenteral diuretic treatment of decompensated heart failure in the community. Br J Community Nurs 2013; 18(11): 528, 530-4.         [ Links ]

162. Barsuk JH, et al. A diuretic protocol increases volume removal and reduces readmissions among hospitalized patients with acute decompensated heart failure. Congest Heart Fail 2013; 19(2): 53-60.         [ Links ]

163. Bleske BE, et al. The effect of continuous infusion loop diuretics in patients with acute decompensated heart failure with hypoalbuminemia. J Cardiovasc Pharmacol Ther 2013; 18(4): 334-7.         [ Links ]

164. Brisco MA, et al. Blood urea nitrogen/creatinine ratio identifies a high-risk but potentially reversible form of renal dysfunction in patients with decompensated heart failure. Circ Heart Fail 2013; 6(2): 233-9.         [ Links ]

165. Brisco MA, et al. Biochemical evidence of mild hepatic dysfunction identifies decompensated heart failure patients with reversible renal dysfunction. J Card Fail 2013; 19(11): 739-45.         [ Links ]

166. Burchell AE, et al. Chemohypersensitivity and autonomic modulation of venous capacitance in the pathophysiology of acute decompensated heart failure. Curr Heart Fail Rep 2013; 10(2): 139-46.         [ Links ]

167. Cakar M, et al. The therapy of acute decompensated heart failure should be performed like a work of art. Cardiology 2013; 124(1): 62.         [ Links ]

168. Campbell P. Dynamic pulmonary hypertension in decompensated heart failure with preserved ejection fraction: is functional mitral regurgitation the driver? J Card Fail 2013; 19(11): 753-5.         [ Links ]

169. Cardoso JN, et al. Diuretic titration based on weight change in decompensated congestive heart failure: a randomized trial. Int J Cardiol 2013; 168(3): 3020-1.         [ Links ]

170. Carlson MD, Eckman PM. Review of vasodilators in acute decompensated heart failure: the old and the new. J Card Fail 2013; 19(7): 478-93.         [ Links ]

171. Chan WY, et al. Urocortin-2 Infusion in Acute Decompensated Heart Failure: Findings From the UNICORN Study (Urocortin-2 in the Treatment of Acute Heart Failure as an Adjunct Over Conventional Therapy). JACC Heart Fail 2013; 1(5): 433-41.         [ Links ]

172. Cheitlin MD. Counterintuitive evidence concerning salt and water restriction in acute decompensated heart failure patients: comment on “Aggressive fluid and sodium restriction in acute decompensated heart failure”. JAMA Intern Med 2013; 173(12): 1064-6.

173. Chintanaboina J, et al. Serum bilirubin as a prognostic marker in patients with acute decompensated heart failure. Korean J Intern Med 2013; 28(3): 300-5.         [ Links ]

174. Cicci JD, Reed BN, McNeely EB, Oni-Orisan A, Patterson JH, Rodgers JE. Acute Decompensated Heart Failure: Evolving Literature and Implications for Future Practice. Pharmacotherapy 2014;34(4):373-88.         [ Links ]

175. Clarke MM, et al. Baseline albumin is associated with worsening renal function in patients with acute decompensated heart failure receiving continuous infusion loop diuretics. Pharmacotherapy 2013; 33(6): 583-8.         [ Links ]

176. Darling C, et al. Delayed hospital presentation in acute decompensated heart failure: clinical and patient reported factors. Heart Lung 2013; 42(4): 281-6.         [ Links ]

177. Dedea L. Should beta-blockers be used in patients with acute decompensated heart failure? JAAPA 2013; 26(8): 15-6.         [ Links ]

178. Demirkol S, et al. Response to 'Improvement of arterial stiffness in the transition from acute decompensated heart failure to chronic compensated heart failure'. Clin Cardiol 2013; 36(12): E49.         [ Links ]

179. Desai AS. Hemoglobin concentration in acute decompensated heart failure: a marker of volume status? J Am Coll Cardiol 2013; 61(19): 1982-4.         [ Links ]

180. Dharmarajan K, et al. Acute decompensated heart failure is routinely treated as a cardiopulmonary syndrome. PLoS One 2013; 8(10): e78222.         [ Links ]

181. Dohi K, Watanabe K, Ito M. Urine osmolality-guided tolvaptan therapy in decompensated heart failure. Circ J 2013; 77(2): 313- 4.         [ Links ]

182. Dunlap ME, Sobotka PA. Fluid re-distribution rather than accumulation causes most cases of decompensated heart failure. J Am Coll Cardiol 2013; 62(2): 165-6.         [ Links ]

183. Dupont M, et al. Determinants of dynamic changes in serum creatinine in acute decompensated heart failure: the importance of blood pressure reduction during treatment. Eur J Heart Fail 2013; 15(4): 433-40.         [ Links ]

184. Ennezat PV, et al. Dynamic nature of pulmonary artery systolic pressure in decompensated heart failure with preserved ejection fraction: role of functional mitral regurgitation. J Card Fail 2013; 19(11): 746-52.         [ Links ]

185. Erbano BO, et al. Lipid profile and mortality after discharge of patients admitted with decompensated heart failure. Int J Cardiol 2013; 167(3): 1066-8.         [ Links ]

186. Erdmann E, et al. Cinaciguat, a soluble guanylate cyclase activator, unloads the heart but also causes hypotension in acute decompensated heart failure. Eur Heart J 2013; 34(1): 57-67.         [ Links ]

187. Ezekowitz JA. Novel pharmacologic therapies in development for acute decompensated heart failure. Curr Cardiol Rep 2013; 15(2): 329.         [ Links ]

188. Freda BJ, Mallidi J, Braden GL. Diuretics or ultrafiltration for acute decompensated heart failure and cardiorenal syndrome? Am J Kidney Dis 2013; 62(3): 453-6.         [ Links ]

189. Givertz MM, et al. Acute decompensated heart failure: update on new and emerging evidence and directions for future research. J Card Fail 2013; 19(6): 371-89.         [ Links ]

190. Gottlieb SS, et al. Effects of nesiritide and predictors of urine output in acute decompensated heart failure: results from ASCEND-HF (acute study of clinical effectiveness of nesiritide and decompensated heart failure). J Am Coll Cardiol 2013; 62(13): 1177-83.         [ Links ]

191. Guazzi M, et al. Pathophysiology of cardiorenal syndrome in decompensated heart failure: role of lung-right heart-kidney interaction. Int J Cardiol 2013; 169(6): 379-84.         [ Links ]

192. Guthrie RM. Review of diuretic and ultrafiltration strategies in patients with acute decompensated heart failure. Hosp Pract (1995) 2013; 41(1): 129-31.         [ Links ]

193. Haase M, et al. Pathogenesis of cardiorenal syndrome type 1 in acute decompensated heart failure: workgroup statements from the eleventh consensus conference of the Acute Dialysis Quality Initiative (ADQI). Contrib Nephrol 2013; 182: 99-116.         [ Links ]

194. Harada K. Acute decompensated heart failure. Nihon Rinsho 2013; 71(6): 1035-41.         [ Links ]

195. Hauptman PJ, et al. Clinical course of patients with hyponatremia and decompensated systolic heart failure and the effect of vasopressin receptor antagonism with tolvaptan. J Card Fail 2013; 19(6): 390-7.         [ Links ]

196. Hernandez MB, et al. Predictors of 30-day readmission in patients hospitalized with decompensated heart failure. Clin Cardiol 2013; 36(9): 542-7.         [ Links ]

197. Hong N, et al. Prognostic value of new-onset anemia as a marker of hemodilution in patients with acute decompensated heart failure and severe renal dysfunction. J Cardiol 2013.         [ Links ]

198. Hou ZQ, et al. Effect of levosimendan on estimated glomerular filtration rate in hospitalized patients with decompensated heart failure and renal dysfunction. Cardiovasc Ther 2013; 31(2): 108-14.         [ Links ]

199. Hou ZQ, et al. Effect of lipo-prostaglandin E1 on cystatin C, beta2-microglobulin, and estimated glomerular filtration rate in patients with decompensated heart failure and renal dysfunction: a single-center, nonrandomized controlled study. Heart Vessels 2013; 28(5): 589-95.         [ Links ]

200. Howlett JG, et al. Global variation in quality of care among patients hospitalized with acute heart failure in an international trial: findings from the acute study clinical effectiveness of nesiritide in decompensated heart failure trial (ASCEND-HF). Circ Cardiovasc Qual Outcomes 2013; 6(5): 534-42.         [ Links ]

201. Iadarola GM, et al. Peritoneal ultrafiltration in patients with advanced decompensated heart failure. J Nephrol 2013; 26 (Suppl 21): 159-76.         [ Links ]

202. Imamura T, et al. Urine osmolality estimated using urine urea nitrogen, sodium and creatinine can effectively predict response to tolvaptan in decompensated heart failure patients. Circ J 2013; 77(5): 1208-13.         [ Links ]

203. Imamura T, et al. Novel criteria of urine osmolality effectively predict response to tolvaptan in decompensated heart failure patients--association between non-responders and chronic kidney disease. Circ J 2013; 77(2): 397-404.         [ Links ]

204. Issa VS, et al. Hypertonic saline solution for prevention of renal dysfunction in patients with decompensated heart failure. Int J Cardiol 2013; 167(1): 34-40.         [ Links ]

205. Jackson CE, et al. Spectral microvolt T-wave alternans testing has no prognostic value in patients recently hospitalized with decompensated heart failure. Eur J Heart Fail 2013; 15(11): 1253-61.         [ Links ]

206. Jastrzebski M, et al. Pseudo-PJRT in an 8 year-old boy with severe decompensated heart failure and recurrent episodes of ventricular fibrillation. Kardiol Pol 2013; 71(3): 310-4.         [ Links ]

207. Kamiya M, et al. A case of marked diuresis by combined dopamine and atrial natriuretic peptide administration without renal injury in acute decompensated heart failure. Int Heart J 2013; 54(4): 243-5.         [ Links ]

208. Katekao W, et al. Retrospective cohort study of association of NSAIDS exposure and outcome of acute decompensated congestive heart failure. J Med Assoc Thai 2013; 96(4): 423-31.         [ Links ]

209. Kaya Z, et al. Serum ceruloplasmin levels in acute decompensated heart failure. Clin Ter 2013; 164(3): e187-91.         [ Links ]

210. Kazory A, Ronco C. Ultrafiltration therapy for acute decompensated heart failure: lessons learned from 2 major trials. Am Heart J 2013; 166(5): 799-803.         [ Links ]

211. Kim DB, et al. Improvement of arterial stiffness in the transition from acute decompensated heart failure to chronic compensated heart failure. Clin Cardiol 2013; 36(6): 358-62.         [ Links ]

212. Koyama S, et al. Early evolution and correlates of urine albumin excretion in patients presenting with acutely decompensated heart failure. Circ Heart Fail 2013; 6(2): 227-32.         [ Links ]

213. Lassus J, et al. Incremental value of biomarkers to clinical variables for mortality prediction in acutely decompensated heart failure: the Multinational Observational Cohort on Acute Heart Failure (MOCA) study. Int J Cardiol 2013; 168(3): 2186-94.         [ Links ]

214. Lassus JP, et al. Long-term survival after hospitalization for acute heart failure - differences in prognosis of acutely decompensated chronic and new-onset acute heart failure. Int J Cardiol 2013; 168(1): 458-62.         [ Links ]

215. Lee AP, et al. Left ventricular systolic dyssynchrony in acute decompensated heart failure. Int J Cardiol 2013; 168(4): 4285-6.         [ Links ]

216. Lim J, et al. Hypereosinophilic syndrome masquerading as a myocardial infarction causing decompensated heart failure. BMC Cardiovasc Disord 2013; 13: 75.         [ Links ]

217. Llorens P, et al. Clinical effects and safety of different strategies for administering intravenous diuretics in acutely decompensated heart failure: a randomised clinical trial. Emerg Med J 2013.         [ Links ]

218. Loehr LR, et al. Classification of acute decompensated heart failure: an automated algorithm compared with a physician reviewer panel: the Atherosclerosis Risk in Communities study. Circ Heart Fail 2013; 6(4): 719-26.         [ Links ]

219. Luers C, et al. NT-proANP and NT-proBNP as prognostic markers in patients with acute decompensated heart failure of different etiologies. Clin Biochem 2013; 46(12): 1013-9.         [ Links ]

220. Madias JE. T-wave alternans in patients hospitalized for decompensated heart failure: sobering realities and where we are going next. Eur J Heart Fail 2013; 15(8): 945.         [ Links ]

221. Makhoul BF, et al. Relation between changes in red cell distribution width and clinical outcomes in acute decompensated heart failure. Int J Cardiol 2013; 167(4): 1412-6.         [ Links ]

222. Mangini S, et al. Decompensated heart failure. Einstein 2013; 11(3): 383-91.         [ Links ]

223. Mantuani D, Nagdev A. Three-view bedside ultrasound to differentiate acute decompensated heart failure from chronic obstructive pulmonary disease. Am J Emerg Med 2013; 31(4): 759 e3-5.         [ Links ]

224. Manzano-Fernandez S, et al. Comparison of risk prediction with the CKD-EPI and MDRD equations in acute decompensated heart failure. J Card Fail 2013; 19(8): 583-91.         [ Links ]

225. Matsue Y, et al. Tolvaptan reduces the risk of worsening renal function in patients with acute decompensated heart failure in high-risk population. J Cardiol 2013; 61(2): 169-74.         [ Links ]

226. Moleerergpoom W, et al, Predictors of in-hospital mortality in acute decompensated heart failure (Thai ADHERE). J Med Assoc Thai 2013; 96(2): 157-64.         [ Links ]

227. Munoz D, Felker GM. Approaches to decongestion in patients with acute decompensated heart failure. Curr Cardiol Rep 2013; 15(2): 335.         [ Links ]

228. Nikolaou M, et al. Liver function abnormalities, clinical profile, and outcome in acute decompensated heart failure. Eur Heart J 2013; 34(10): 742-9.         [ Links ]

229. Ophelie F. Role of the nurse in administering beta blockers to patients with acute decompensated heart failure. Rev Infirm 2013(191): 41-4.         [ Links ]

230. Ota KS, Lazkani M, Stander P. Reducing hospitalizations for acute decompensated heart failure: the infusion room approach. J Am Coll Cardiol 2013; 61(24): 2490-1.         [ Links ]

231. Ozcan S, et al. The prognostic significance of narrow fragmented QRS on admission electrocardiogram in patients hospitalized for decompensated systolic heart failure. Clin Cardiol 2013; 36(9): 560-4.         [ Links ]

232. Packer M, et al. Effect of levosimendan on the short-term clinical course of patients with acutely decompensated heart failure. JACC Heart Fail 2013; 1(2): 103-11.         [ Links ]

233. Parissis JT, et al. Prognostic value of high sensitivity troponin T in patients with acutely decompensated heart failure and nondetectable conventional troponin T levels. Int J Cardiol 2013; 168(4): 3609-12.         [ Links ]

234. Pereira-Barretto AC, et al. Role of BNP levels on the prognosis of decompensated advanced heart failure. Arq Bras Cardiol 2013; 100(3): 281-7.         [ Links ]

235. Raichlin E, et al. Worsening renal function in patients with acute decompensated heart failure treated with ultrafiltration: predictors and outcomes. J Card Fail 2013; 19(12): 787-94.         [ Links ]

236. Rami K. Aggressive salt and water restriction in acutely decompensated heart failure: is it worth its weight in salt? Expert Rev Cardiovasc Ther 2013; 11(9): 1125-8.         [ Links ]

237. Reed SD, et al. Medical resource use, costs, and quality of life in patients with acute decompensated heart failure: findings from ASCEND-HF. J Card Fail 2013; 19(9): 611-20.         [ Links ]

238. Regolisti G, Fiaccadori E. Ultrafiltration in acute decompensated heart failure: friend or foe for the kidney? J Nephrol 2013; 26(3): 421-6.         [ Links ]

239. Ricci F, et al. Predisposing factors for acute kidney injury in Hispanic patients treated with diuretics for decompensated heart failure. P R Health Sci J 2013; 32(2): 63-7.         [ Links ]

240. Riley J. Acute decompensated heart failure: diagnosis and management. Br J Nurs 2013; 22(22): 1290-5.         [ Links ]

241. Roy AK, et al. A Comparison of Traditional and Novel Definitions (RIFLE, AKIN, and KDIGO) of Acute Kidney Injury for the Prediction of Outcomes in Acute Decompensated Heart Failure. Cardiorenal Med 2013; 3(1): 26-37.         [ Links ]

242. Samara MA, et al. Single exhaled breath metabolomic analysis identifies unique breathprint in patients with acute decompensated heart failure. J Am Coll Cardiol 2013; 61(13): 1463-4.         [ Links ]

243. Scrutinio D, et al. Clinical utility of N-terminal pro-B-type natriuretic peptide for risk stratification of patients with acute decompensated heart failure. Derivation and validation of the ADHF/NT-proBNP risk score. Int J Cardiol 2013; 168(3): 2120- 6.         [ Links ]

244. Scrutinio D, et al. Association between conformity with performance measures and 1-year postdischarge survival in patients with acute decompensated heart failure. Am J Med Qual 2013; 28(2): 160-8.         [ Links ]

245. Sethares KA, et al. Factors Associated With Delay in Seeking Care for Acute Decompensated Heart Failure. J Cardiovasc Nurs 2013.         [ Links ]

246. Shah AB, et al. An evaluation of the prevalence and severity of pain and other symptoms in acute decompensated heart failure. J Palliat Med 2013; 16(1): 87-90.         [ Links ]

247. Shao Z, et al. Increasing serum soluble angiotensin-converting enzyme 2 activity after intensive medical therapy is associated with better prognosis in acute decompensated heart failure. J Card Fail 2013; 19(9): 605-10.         [ Links ]

248. Shirakabe A, et al. Prognostic impact of acute kidney injury in patients with acute decompensated heart failure. Circ J 2013; 77(3): 687-96.         [ Links ]

249. Singh B, et al. Anomalous mitral arcade variant with accessory mitral leaflet and chordae presenting for the first time with acute decompensated heart failure in an adult. Echocardiography 2013; 30(7): E202-5.         [ Links ]

250. Solomonica A, Burger AJ, Aronson D. Hemodynamic determinants of dyspnea improvement in acute decompensated heart failure. Circ Heart Fail 2013; 6(1): 53-60.         [ Links ]

251. Sonaglioni A, et al. Giant left atrium in a patient with decompensated heart failure. G Ital Cardiol 2013; 14(4): 286-8.         [ Links ]

252. Squara P, et al. Preload reserve is restored in patients with decompensated chronic heart failure who respond to treatment. Congest Heart Fail 2013; 19(4): 207-13.         [ Links ]

253. Tasal A, et al. Utility of the neutrophil to lymphocyte ratio for predicting in-hospital mortality after levosimendan infusion in patients with acute decompensated heart failure. J Cardiol 2013.         [ Links ]

254. Teerlink JR, et al. Acute Decompensated Heart Failure Update. Curr Cardiol Rev 2013.         [ Links ]

255. Testa G, et al. Precipitating factors in younger and older adults with decompensated chronic heart failure: are they different? J Am Geriatr Soc 2013; 61(10): 1827-8.         [ Links ]

256. Testani JM, et al. Timing of hemoconcentration during treatment of acute decompensated heart failure and subsequent survival: importance of sustained decongestion. J Am Coll Cardiol 2013; 62(6): 516-24.         [ Links ]

257. Ueda T, et al. High mean corpuscular volume is a new indicator of prognosis in acute decompensated heart failure. Circ J 2013; 77(11): 2766-71.         [ Links ]

258. Valdespino-Trejo A, et al. Low albumin levels and high impedance ratio as risk factors for worsening kidney function during hospitalization of decompensated heart failure patients. Exp Clin Cardiol 2013; 18(2): 113-7.         [ Links ]

259. van der Meer P, et al. The predictive value of short-term changes in hemoglobin concentration in patients presenting with acute decompensated heart failure. J Am Coll Cardiol 2013; 61(19): 1973-81.         [ Links ]

260. Verbrugge FH, et al. Novel urinary biomarkers in detecting acute kidney injury, persistent renal impairment, and allcause mortality following decongestive therapy in acute decompensated heart failure. J Card Fail 2013; 19(9): 621-8.         [ Links ]

261. Wong YW, et al. Early intravenous heart failure therapy and outcomes among older patients hospitalized for acute decompensated heart failure: findings from the Acute Decompensated Heart Failure Registry Emergency Module (ADHERE-EM). Am Heart J 2013; 166(2): 349-56.         [ Links ]

262. Wu Y, et al. Passive leg movement enhances diuresis and decline of plasma NT-proBNP level in patients with decompensated heart failure treated with furosemide. Int J Cardiol 2013; 168(4): 4289-90.         [ Links ]

263. Yalcinkaya E, et al. Response to improvement of arterial stiffness in the transition from acute decompensated heart failure to chronic compensated heart failure. Clin Cardiol 2013; 36(9): E25.         [ Links ]

264. Yamauchi H, et al. Clinical features of patients with decompensated heart failure after the Great East Japan Earthquake. Am J Cardiol 2013; 112(1): 94-9.         [ Links ]

265. Yildiz A, et al. Comprehensive assessment of biomarkers in acutely decompensated heart failure: an in-depth look. Int J Cardiol 2013; 168(4): 4304.         [ Links ]

266. Zatarain-Nicolas E, et al. Subcutaneous Infusion of Furosemide Administered by Elastomeric Pumps for Decompensated Heart Failure Treatment: Initial Experience. Rev Esp Cardiol 2013; 66(12): 1002-1004.         [ Links ]

267. Zhao YL, et al. Ultrafiltration versus intravenous diuretics in decompensated heart failure: a meta-analysis of randomized controlled trials. Zhonghua Yi Xue Za Zhi 2013; 93(30): 2345- 50.         [ Links ]

268. Alhabib KF, et al. Clinical features, management, and short- and long-term outcomes of patients with acute decompensated heart failure: phase I results of the HEARTS database. Eur J Heart Fail 2014.         [ Links ]

269. Anderson KL, et al. Point-of-care ultrasound diagnoses acute decompensated heart failure in the ED regardless of examination findings. Am J Emerg Med 2014; 32(4): 385-8.         [ Links ]

270. Aronson D, Dragu R, Azzam ZS. Reply to Acute decompensated heart failure and pulmonary hypertension. J Card Fail 2014; 20(1): 63-4.         [ Links ]

271. Blair TL. Device diagnostics and early identification of acute decompensated heart failure: a systematic review. J Cardiovasc Nurs 2014; 29(1): 68-81.         [ Links ]

272. Chamsi-Pasha MA, et al. Utilization pattern of mineralocorticoid receptor antagonists in contemporary patients hospitalized with acute decompensated heart failure: a single-center experience. J Card Fail 2014; 20(4): 229-35.         [ Links ]

273. Chang PP, et al. Incidence and survival of hospitalized acute decompensated heart failure in four US communities (from the Atherosclerosis Risk in Communities Study). Am J Cardiol 2014; 113(3): 504-10.         [ Links ]

274. Cleland JG, et al. Predictors of postdischarge outcomes from information acquired shortly after admission for acute heart failure: a report from the Placebo-Controlled Randomized Study of the Selective A1 Adenosine Receptor Antagonist Rolofylline for Patients Hospitalized With Acute Decompensated Heart Failure and Volume Overload to Assess Treatment Effect on Congestion and Renal Function (PROTECT) Study. Circ Heart Fail 2014; 7(1): 76-87.         [ Links ]

275. Danilowicz-Szymanowicz L, Molon G, Raczak G. Is microvolt T-wave alternans testing suitable for patients recently hospitalized due to decompensated heart failure? Eur J Heart Fail 2014; 16(1): 112.         [ Links ]

276. De Vecchis R, Esposito C, Ariano C. Efficacy and safety assessment of isolated ultrafiltration compared to intravenous diuretics for acutely decompensated heart failure: a systematic review with meta-analysis. Minerva Cardioangiol 2014; 62(2): 131-46.         [ Links ]

277. De Vecchis R, et al. Hypertonic saline plus i.v. furosemide improve renal safety profile and clinical outcomes in acute decompensated heart failure : A meta-analysis of the literature. Herz 2014.         [ Links ]

278. Dohi K, Ito M. Immediate and short-term use of tolvaptan for acute decompensated heart failure. Circ J 2014; 78(4): 829-31.         [ Links ]

279. Durmus E, Hunuk B, Erdogan O. Increase in QRS amplitudes is better than N-terminal pro-B-type natriuretic peptide to predict clinical improvement in decompensated heart failure. J Electrocardiol 2014.         [ Links ]

280. Eng M, Bansal S. Use of natriuretic-doses of spironolactone for treatment of loop diuretic resistant acute decompensated heart failure. Int J Cardiol 2014; 170(3): e68-9.         [ Links ]

281. Fedele F, et al. Levosimendan improves renal function in acute decompensated heart failure: possible underlying mechanisms. Eur J Heart Fail 2014; 16(3): 281-8.         [ Links ]

282. Ferreira JP, et al. Mineralocorticoid receptor antagonism in acutely decompensated chronic heart failure. Eur J Intern Med 2014; 25(1): 67-72.         [ Links ]

283. Ferreira JP, et al. The role of albuminuria as a non-invasive marker for congestive acutely decompensated chronic heart failure and the spironolactone effect in elderly Portuguese: a non-randomized trial. Nephrology (Carlton) 2014; 19(3): 149- 56.         [ Links ]

284. Ishii S, et al. Clinical significance of heart rate during acute decompensated heart failure to predict left ventricular reverse remodeling and prognosis in response to therapies in nonischemic dilated cardiomyopathy. Heart Vessels 2014; 29(1): 88-96.         [ Links ]

285. Iyngkaran P, et al. Northern Territory Heart Failure Initiative- Clinical Audit (NTHFI-CA)-a prospective database on the quality of care and outcomes for acute decompensated heart failure admission in the Northern Territory: study design and rationale. BMJ Open 2014; 4(1): e004137.         [ Links ]

286. Jackson CE, Myles RC, McMurray JJ. Microvolt T-wave alternans testing in patients recently hospitalized with decompensated heart failure. Eur J Heart Fail 2014; 16(1): 113.         [ Links ]

287. Kasama S, et al. Evaluation of cardiac sympathetic nerve activity and aldosterone suppression in patients with acute decompensated heart failure on treatment containing intravenous atrial natriuretic peptide. Eur J Nucl Med Mol Imaging 2014.         [ Links ]

288. Kobayashi S, et al. A low-dose beta1-blocker effectively and safely slows the heart rate in patients with acute decompensated heart failure and rapid atrial fibrillation. Cardiology 2014; 127(2): 105-13.         [ Links ]

289. Koza Y. Acute decompensated heart failure and pulmonary hypertension. J Card Fail, 2014. 20(1): 63.         [ Links ]

290. Kulkarni VT, et al. Hospital Variation in Non-Invasive Positive Pressure Ventilationfor Acute Decompensated Heart Failure. Circ Heart Fail 2014.         [ Links ]

291. Kwong JS, Yu CM. Ultrafiltration for acute decompensated heart failure: a systematic review and meta-analysis of randomized controlled trials. Int J Cardiol 2014; 172(2): 395-402.         [ Links ]

292. Lee SR, et al. Prognostic Implication of QRS Variability during Hospitalization in Patients with Acute Decompensated Heart Failure. Korean Circ J 2014; 44(1): 22-9.         [ Links ]

293. Leto L, Aspromonte N, Feola M. Efficacy and safety of loop diuretic therapy in acute decompensated heart failure: a clinical review. Heart Fail Rev 2014; 19(2): 237-46.         [ Links ]

294. Liu C, Liu K, C-AS Group. Cardiac Outcome Prevention Effectiveness of Glucocorticoids in Acute Decompensated Heart Failure: COPE-ADHF Study. J Cardiovasc Pharmacol 2014; 63(4): 333-8.         [ Links ]

295. Madias JE. Decompensated chronic heart failure>Takotsubo syndrome versus Takotsubo syndrome>decompensated chronic heart failure: Two plausible inverse parallels. Int J Cardiol 2014; 173(2): 319.         [ Links ]

296. Matsue Y, et al. Clinical effectiveness of tolvaptan in patients with acute decompensated heart failure and renal failure: design and rationale of the AQUAMARINE study. Cardiovasc Drugs Ther 2014; 28(1): 73-7.         [ Links ]

297. Maze R, Haddad H. An update in the management of acute decompensated heart failure. Curr Opin Cardiol 2014; 29(2): 180-4.         [ Links ]

298. Naffaa M, et al. Brain natriuretic peptide at discharge as a predictor of 6-month mortality in acute decompensated heart failure. Am J Emerg Med 2014; 32(1): 44-9.         [ Links ]

299. Ohmura T, et al. Impact of predischarge nocturnal pulse oximetry (sleep-disordered breathing) on postdischarge clinical outcomes in hospitalized patients with left ventricular systolic dysfunction after acute decompensated heart failure. Am J Cardiol 2014; 113(4): 697-700.         [ Links ]

300. Okuhara Y, et al. Intravenous Salt Supplementation with Lowdose Furosemide for Treatment of Acute Decompensated Heart Failure. J Card Fail 2014.         [ Links ]

301. Pan HY, et al. Comparative effects of recombinant human brain natriuretic peptide and dobutamine on acute decompensated heart failure patients with differsent blood BNP levels. BMC Cardiovasc Disord 2014; 14: 31.         [ Links ]

302. Pauly DF. Managing acute decompensated heart failure. Cardiol Clin 2014; 32(1): 145-9, ix.         [ Links ]

303. Rao N, et al. Dramatic improvement in decompensated right heart failure due to severe tricuspid regurgitation following ligation of arteriovenous fistula in a renal transplant recipient. Semin Dial 2014; 27(2): E24-6.         [ Links ]

304. Shams Y-Hassan. Chronic takotsubo syndrome with acute exacerbations may be the villain in the increase of morbidity and mortality in patients with decompensated chronic heart failure. Int J Cardiol 2014; 172(3): 609-10.         [ Links ]

305. Salah K, et al. A novel discharge risk model for patients hospitalised for acute decompensated heart failure incorporating N-terminal pro-B-type natriuretic peptide levels: a European coLlaboration on Acute decompeNsated Heart Failure: ELANHF Score. Heart 2014; 100(2): 115-25.         [ Links ]

306. Sancho-Zamora MA. Home Subcutaneous Infusion of Furosemide in Advanced Decompensated Heart Failure. Rev Esp Cardiol 2014; 67(3): 241-242.         [ Links ]

307. Sargento L, et al. Heart Rate Reduction with Ivabradine in Patients with Acute Decompensated Systolic Heart Failure. Am J Cardiovasc Drugs 2014.         [ Links ]

308. Scrutinio D, et al. The ADHF/NT-proBNP risk score to predict 1-year mortality in hospitalized patients with advanced decompensated heart failure. J Heart Lung Transplant 2014. 33(4): 404-11.         [ Links ]

309. Shah R, et al. Body mass index and mortality in acutely decompensated heart failure across the world: a global obesity paradox. J Am Coll Cardiol 2014; 63(8): 778-85.         [ Links ]

310. Shirakabe A, et al. Immediate administration of tolvaptan prevents the exacerbation of acute kidney injury and improves the mid-term prognosis of patients with severely decompensated acute heart failure. Circ J 2014; 78(4): 911-21.         [ Links ]

311. Sica DA, Shah KB. More Salt is Better: A Novel Management Approach to Acute Decompensated Heart Failure. J Card Fail 2014.         [ Links ]

312. Singer AJ, et al. Hemodynamic profiles of ED patients with acute decompensated heart failure and their association with treatment. Am J Emerg Med 2014; 32(4): 302-5.         [ Links ]

313. Singh D, et al. Insufficient Natriuretic Response to Continuous Intravenous Furosemide Is Associated with Poor Long-Term Outcomes in Acute Decompensated Heart Failure. J Card Fail 2014.         [ Links ]

314. Testani JM, et al. Loop diuretic efficiency: a metric of diuretic responsiveness with prognostic importance in acute decompensated heart failure. Circ Heart Fail 2014; 7(2): 261-70.         [ Links ]

315. Triposkiadis FK, et al. Efficacy and safety of high dose versus low dose furosemide with or without dopamine infusion: the Dopamine in Acute Decompensated Heart Failure II (DAD-HF II) trial. Int J Cardiol 2014; 172(1): 115-21.         [ Links ]

316. Turner JM, Testani JM. Do Any Patients with Acute Decompensated Heart Failure and Acute Cardio-Renal Syndrome Benefit from Ultrafiltration? Semin Dial 2014.         [ Links ]

317. Ueda T, et al. Noncardiovascular death, especially infection, is a significant cause of death in elderly patients with acutely decompensated heart failure. J Card Fail 2014; 20(3): 174-80.         [ Links ]

318. Wang S, et al. The effect of B-type brain natriuretic peptide on patients with acute decompensated heart failure coexisting with lung cancer: a randomized controlled clinical trial. Pharmazie 2014; 69(3): 212-6.         [ Links ]

319. Wu MY, et al. Loop diuretic strategies in patients with acute decompensated heart failure: a meta-analysis of randomized controlled trials. J Crit Care 2014; 29(1): 2-9.         [ Links ]

320. Zatarain-Nicolas E, de la Fuente-Galan L, San Roman-Calvar JA. Home Subcutaneous Infusion of Furosemide in Advanced Decompensated Heart Failure. Response. Rev Esp Cardiol 2014; 67(3): 242.         [ Links ]

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License