SciELO - Scientific Electronic Library Online

 
vol.29 número2Anfibios de las Sierras Pampeanas Centrales de Argentina: diversidad y distribución altitudinalDiversity and conservation status of the herpetofauna for an area from north of Hidalgo, Mexico índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

  • No hay articulos citadosCitado por SciELO

Links relacionados

Compartir


Cuadernos de herpetología

versión On-line ISSN 1852-5768

Cuad. herpetol. vol.29 no.2 San Salvador de Jujuy set. 2015

 

TRABAJO

Tadpole morphology of Leptodactylus plaumanni (Anura: Leptodactylidae), with comments on the phylogenetic significance of larval characters in Leptodactylus

Jimena R. Grosso

Unidad Ejecutora Lillo - Instituto de Herpetología, Consejo Nacional de Investigaciones Científicas y Técnicas, Miguel Lillo 251, 4000 S. M. de Tucumán, Argentina.

Recibido: 05/12/14
Revisado: 19/12/14
Aceptado: 30/12/14


ABSTRACT

In this paper I summarize the morphology of the Leptodactylus plaumanni tadpoles, describing the external morphology, buccal cavity, and cranial skeleton and associated muscles. A distinctive combination of traits include the truncated snout in dorsal view, dorsal fin originated anterior to the body-tail junction, submarginal papillae present in some specimens, two slight indenta­tions in the lower lip, ceratobranchial III free from the hypobranchial plate, small ventrolateral projections of the corpus of the suprarostral cartilage, m. subarcualis rectus I with three heads, and m. subarcualis rectus II-IV inserting in ceratobranchial I and connective tissue between branchial processes II and III. The buccal cavity shares the typical features in species of the group, namely four lingual papillae, two pairs of infralabial papillae, two postnarial papillae, and one pair of not branched lateral ridge papillae. Attending to the increasing role of larval characters in phylogenetic analyses, further research is needed to understand the evolution of tadpole morphology in this genus.

Key words: Buccal Cavity; Chondrocranium; Cranial Musculature; Leptodactylus fuscus Species Group

RESUMEN

En este trabajo resumo la morfología larval de Leptodactylus plaumanni, describiendo su morfología externa, cavidad bucal, esqueleto craneal y músculos asociados. Una combinación distintiva de caracteres incluye el rostro truncado en vista dorsal, aleta dorsal originada anterior a la unión cuerpo-cola, papilas submarginales en algunos especímenes, dos pequeñas escotaduras en el labio inferior, ceratobranchial III no fusionado al hipobranquial, pequeños procesos en el cuerpo y alas del suprarostral, m. subarcualis rectus I con tres haces, y m. subarcualis rectus II-IV inserto en el ceratobranquial I y en tejido conectivo entre los procesos branquiales II y III. La cavidad bucal comparte los rasgos típicos de las especies del grupo, por ejemplo las cuatro papilas linguales, dos pares de papilas infralabiales, dos papilas postnariales, y un par de papilas laterales no ramificadas. Atendiendo al creciente rol de los caracteres larvales en análisis filogenéticos, investigaciones adicionales son necesarias para interpretar la evolución de la morfología larval en este género.

Palabras clave: Cavidad Bucal; Condrocráneo; Musculatura Craneal; Grupo Leptodactylus fuscus.


 

INTRODUCTION

The White Lipped Frog Leptodactylus plaumanni (Ahl, 1936) is a medium sized leptodactylid distributed from northeastern Misiones (Argentina) to south Brazil (Santa Catarina, Parana, and Rio Grande do Sul states). It belongs to the L. fuscus group (Heyer, 1978), which, as redefined by de Sá et al. (2014), currently comprises another 30 species including L. syphax and L. laticeps formerly in the L. pentadactylus group.

Larval stages of almost all species in the Lep­todactylus fuscus group are known, excepting L. didymus, L. laticeps, L. labrosus, L. poecilochilus, L. sertanejo, and L. ventrimaculatus, whereas the tadpole of L. plaumanni was only described as part of a phD thesis (Carvalho et al., 2005), still pending a formal description. Conversely, the information about internal features is still limited within the whole genus; data of 11 species of the L. fuscus group are available (e.g., Fabrezi and Vera, 1997; Larson and de Sá, 1998; Wassersug and Heyer, 1988; Sandoval, 2004; Alcalde, 2005; Prado and d'Heursel, 2006) and four additional species are included in a recent phylogenetic analysis (Miranda et al., 2014). The present work emphasizes on external morphology, buccal cavity features, and chondrocranial architecture. Results are discussed and interpreted on the light of available data for related species and within the frame of a comprehensive phylogenetic hypothesis for the genus (de Sá et al., 2014).

MATERIALS AND METHODS

A set of 26 larvae of Leptodactylus plaumanni was collected in Bernardo de Irigoyen (Misiones, Argentina – 26º11’48’’S/ 53º58’54’’W). The tadpoles were euthanized in the field with tricaine mesylate, fixed and preserved in 4% formalin, and staged after Gosner table (1960). Voucher specimens are housed at the Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical (CONICET-UNaM; Posadas, Argentina-LGE 3379).

Descriptions were made using a steromicros­cope, and measurements were obtained from 10 tadpoles using a micrometric ocular and following Lavilla (1983) and Altig and McDiarmid (1999): total length (TL), body length (BL), body maximum width (BMW), body width at nares (BWN), body width at eyes (BWE), body maximum height (BMH), tail length (TAL), tail muscle height (TMH), maximum tail height (MTH), nare length (N), extranarial distance (END), internarial distance (IND), eye diameter (E), extraorbital distance (EOD), interorbital distance (IOD), rostro-spiracular distance (RSD), fronto-narial distance (FND), eye-nares distance (EN), oral disc width (OD), and dorsal gap width (DG). Three tadpoles were dissected and prepared for buccal structure examination, exposing the cavity after Wassersug (1976a) technique, and then staining with methylene blue. Two larvae were also prepared for scanning electron microscopy, following a standard dehydration, critical point and metallization protocol (Echeverría, 1995). Specific terminology is that proposed by Wassersug (1976a). For musculoskeletal system features record, eight larvae were double stained for cartilage and bone (Wassersug, 1976b), interrupting the procedure before clearing so those muscles are not digested and can be contrasted with Lugol’s solution (Böck and Shear, 1972). Terminology is that used by Larson and de Sá (1998) and Haas (2003).

 

RESULTS

External Morphology (N =18; St. 34–37; Figs. 1 and 2). Tadpoles have an ovoid, depressed body without constrictions. The snout is truncated in dorsal view, and slightly rounded in lateral view. The nares are dorsolaterally located, ovoid with a raised edge. The eyes are also dorsolateral, visible in dorsal and lateral view. The spiracle is sinistral and located lateral in the posterior half of the body; the spiracle tube extends dorso-posteriorly and attaches to the body wall leaving the end free and an ovoid opening. The proctodeal tube is short, uniformly wide, and medial. The lateral lines are not visible macroscopically at the studied stages. The tail is twice longer than the body and nearly straight. The fins, slightly taller than the body, have their maximum height at the second third. The dorsal fin originates before the body-tail junction and the ventral fin starts after the proctodeal tube; the tail tip is rounded, the tail's muscles reach until the tip and the fins get narrower at that point. The oral disc (Fig. 1C and 2A) is subterminal, not emarginate, and represents almost half of the maximum body width. The upper lip is a continua­tion of the snout meanwhile the lower lip is separated of the body wall. The disc is oblong with two slight lower indentations at the level of P3 edges (Fig. 2A). It is delimited by a single alternate row of marginal papillae (not seen in the specimen of Figs. 1 and 2), dorsally interrupted by a wide gap that represents 56% of the maximum width of the disc. Two or three submarginal papillae are present at the commissures in some specimens. Labial teeth are arranged in two anterior rows (A1, A2), the second with a wide gap, and three posterior rows decreasing in length from proximal to distal (P1, P2, P3), the first one with a narrow gap, giving a labial tooth row formula (LTRF) 2(2)/3(1); labial tooth density is approximately 100/mm. Individual labial teeth present three regions: a slightly curved, spoon-shaped head with six to eight cusps, an intermediate body, and a broad sheath (Fig. 2B,C). The jaws sheaths are keratinized (as indicated by coloration) and distally serrated (60 serration/ mm approx.), the upper one convex and the lower one smaller and V-shaped.


Figure 1. External morphology of Leptodactylus plaumanni, Stage 36–37 (A) Lateral view; (B) Dorsal and ventral view of the body, bar = 1mm; (C) Oral disc, bar = 500μm.


Figure 2. SEM micrographs of the oral disc of Leptodactylus plaumanni, Stage 36–37 (A) Oral disc, bar = 100μm; (B) Detail of the labial teeth of P1 and lower jaw sheath; (C) Detail of the marginal papillae, bar = 10μm.

Coloration in preservative. The tadpole presents a dark brown coloration suggested by a spray of spots at dorsal, specially over the mid line. The spots gradually scatter at the laterals rendering the venter almost translucent. The coiled gut and several ventral muscles are seen through the abdominal wall. Caudal muscles are softly pigmented specially in the first half of the tail. Fins are transparent, with some small brown dots dispersed.

Buccal cavity. (N = 4; St. 34–37; Fig. 3). In the buccal roof (Fig. 3A) the prenarial arena is quadrangular and shows two broad, crescent-shaped prenarial ridges medially placed (Fig. 3B). The internal nares are long and transversally arranged; a smooth narial valve is differentiated at the posterior wall, and small prenarial papillae appear at the anterior wall. Two long, finger-like papillae with jagged surface extend medially on the postnarial arena, accompanied by small, sparse pustulations. Lateral ridge papillae are simple, slightly pustulated, shorter and wider than postnarial papillae, and project medially towards the median ridge. The median ridge is placed slightly posterior to the level of the lateral ridge papillae; it is low and triangular and shows several short projections at the free margin. The U-shaped buccal roof arena is delimited by 4–5 paired conical papillae, the most caudal are larger; about 50 pustulations are scattered on the central region. Groups of 5–6 lateral roof papillae, some often fused at their bases, appear on both sides of the arena. The glandular zone (Fig. 3C) appears as a broad band array, and secretory pits are very large, especially those most distal. The dorsal velum (not shown) is interrupted medially and displays finger-like papillae and pustulations next to the notch.


Figure 3. SEM micrographs of the oral cavity of Leptodactylus plaumanni, Stage 36–37 (A) Buccal roof; (B) Prenarial arena; (C) Glandular zone next to the dorsal velum; (D) Buccal floor, bar = 100μm; (E) Detail of the infralabial and lingual papillae, bar = 10μm; (F) Medial notch and glandular zone of the ventral velum, bar=100μm. BFA: buccal floor arena, BFAP: buccal floor arena papillae, BP: buccal pocket, BRA: buccal roof arena, BRAP: buccal roof arena papillae, ILP: infralabial papillae, IN: internal nares, MN: medial notch, MR: median ridge, LP: lingual papillae, LRP: lateral ridge papillae, PNAR: prenarial ridge, PTNP: postnarial papillae, SP: secretory pits.

In the buccal floor (Fig. 3D) there are four infralabial papillae (Fig. 3E): the two anterior are globose, close to each other in the midline, whereas the two posterior are hook-shaped and project medially from the Meckel’s cartilages. The tongue anlage has four conical lingual papillae, the two medial being larger and wider, often fused for half their length. The buccal pockets are long and transversely arranged, and show a few short prepocket papillae and pustulations. The V-shaped buccal floor arena is lined by 7–8 paired long, conical papillae, accompanied by numerous pustulations (more than 50); those papillae at the level of the buccal pocket are the largest and often fused at their bases. A second row of buccal papillae locate caudally following the anterior edge of the ventral velum. The ventral velum is semicir­cular and supported by the spicules; its margin is smooth and thick, with a marginal projection over each filter plate and a median notch (Fig. 3F) with small projections on each side; large secretory pits are seen at the whole margin of the velum.

Table 1. Measurements of external morphology of Leptodactylus plaumanni tadpoles (N = 10, St. 34–36). Measurements are given in mm.

Chondrocranium. (N = 8; St. 34–37; Fig. 4). The chondrocranium (Fig. 4A,B) represents almost half the total body length (49%). The maximum width is at the posterior region of the subocular bar near to the ascending process. The suprarostral cartilage (Fig. 4E) shows two stout corpora fused ventromedially forming a U-shaped structure, and two lateral alae. In the corpora, two small, rounded protuberances face to each other from the medial margins, and two smaller processes project from the ventrolateral margin towards the alae (Fig. 4F). The alae are flat and triangular, and fuse dorsally to the corpora; their ventral margins are rounded and exceed each corpus length; three processes are visible on each ala: long, acute posterior dorsal processes, a robust, lower anterior dorsal process, and a small ventral process projecting towards the corpus. A diffuse adrostral tissue mass is visible next to the posterior dorsal process of the ala. The trabecular horns represent almost the fourth part (23%) of the chondrocranium length; they are flat, distally wider, and slightly curved ventrally to articulate with the anterior dorsal process of the suprarostral cartilage. The lateral trabecular process is absent. The sole nasal structures present at the studied stages is the lamina orbitonasales, visible as two small, triangular projections laterally oriented.


Figure 4. Chondrocranium of Leptodactylus plaumanni, Stage 36–37 (A) dorsal view of the neurocranium and palatoquadrate; (B) ventral view of the neurocranium and palatoquadrate; (C) ventral view of the hyobranchial apparatus, bar = 1mm; (D) detail of the larval crista parotica in a dorsal view of the capsule; (E) Detail of the suprarostral (F) Detail of the lower jaw cartilages, bar = 500 μm. A: ala of the suprarostral, AC: articular condyle, ADP: anterior dorsal process of the ala of the suprarostral, ALPO: anterolateral process of the otic capsule, ALPC: anterolateral process of certohyal, APC: anterior process of the certohyal, ARP: articular process, ASP: ascending process, BB: basibranchial, C: corpus of the suprarostral, CB: ceratobranchial, CF: carotid foramen, CH: ceratohyal, DMP: dorsomedial process of the Meckel's cartilage, FO: fenestra ovalis, HP: hypobranchial plate, JF: jugular foramen, LCP: larval crista parotica, MC: Meckel's cartilage, MP: muscular process, OC: otic capsules, PDP: posterior dorsal process of the ala of the suprarostral, PLPO: posterolateral process of the otic capsule, PPC: posterior process of the ceratohyal, PR: pars reuniens, QCC: quadratocranial commissure, QEP: quadratoethmoid process, QOC: quadratoorbital commissure, RP: retroarticular process of the Meckel's cartilage, S: spicule, SB: subocular bar, TC: terminal commissure, TH: trabecular horns, UP: urobranchial process, VMP: ventromedial process of the Meckel's cartilage.

The chondrocranial floor is weakly chondrified at the studied stages; the carotid foramina are visible at the posterior region, caudal to the ascending process attachment, whereas the craniopalatine foramina are not evident in most specimens. The orbital cartilages are not fully developed and they are only visible at the posterior region next to the otic capsules; the optic and oculomotor foramina are well delimited and the trochlear foramen is poorly defined; the prootic foramen is dorsally open in most specimens. The frontoparietal fontanelle remains open at the studied stages, with no tectal structures developed.

The otic capsules (Fig. 4D) are ovoid, repre­senting almost 30% of the chondrocranium length; a thin larval crista parotica is present at each capsule lateral margin, and two processes are differentiated: a long, acute anterolateral process projected toward the subocular bar, and a weak, triangular posterolateral process. The fenestra ovalis is large and ventromedially placed and the operculum is not yet developed; the endolymphatic, perilymphatic inferior and superior, acoustic and jugular foramina are defined.

The palatoquadrate is anteriorly narrow and becomes wider posteriorly, with a smooth, curved lateral margin. The wide and short articular process is easily distinguishable from the muscular process in lateral view. The muscular process is triangular, outwardly curved with a rounded proximal edge; a small process projects laterally from the anterior margin. The palatoquadrate is attached to the neu­rocranium via three structures: the quadratocranial commissure that shows an acute quadratoethmoid process, the quadratoorbital commissure, and the thin ascending process with a perpendicular, intermediate attachment to the pila antotica. In the lower jaw (Fig. 4F), the Meckel’s cartilages have a sigmoid shape and three conspicuous process: the retroar­ticular process and the dorso and ventromedial processes. The infrarostrals are small and dorsally curved, proximally narrow and wider near to the articulation with the Meckel’s cartilage.

In the hyobranchial skeleton (Fig. 4C), the elongated ceratohyals show four conspicuous processes: a triangular, wide anterior process, a lower, medially curved anterolateral process, a triangular, wide posterior process not in contact with the hypobranchial plate, and finally a broad, robust articular condyle. The ceratohyals are connected medially through the pars reuniens, often scarcely chondrified. The basibranchial is almost as long as the pars reuniens and it is continuous with the hypobranchial plates; a small urobranchial process projects caudally from its posterior region. The basihyal is absent. The hypobranchial plates are wide and flat, and articulate to each other through one or two connections along the medial margin; they diverge caudally leaving a narrow U-shaped notch. The ceratobranchials are thin, long and curved, excepting the fourth one which is wider, shorter, and fairly flat. All cerato­branchials have numerous lateral projections on their margins. Proximally, the ceratobranchials I, II and IV are continuous to the hypobranchial plate, whereas the ceratobranchial III joins the plate by a narrow ligament. Ceratobranchials are distally joined by terminal commissures, whereas proximal commissures are absent. The spicules I–III are long, curved, and clearly visible; the fourth spicule appears to be incorporated to the distal edge of the hypobranchial plate. Branchial processes I–III are well developed.

Musculature. (Fig. 5). Table 2 shows the list of cranial muscles, detailing insertions sites and some comments.


Figure 5. Chondrocranial muscles of Leptodactylus plaumanni, Stage 36–37 (A) Dorsal view; (B) Ventral view, bar = 1mm; (C) Detail of the angular muscles; (D) Detail of the glottis and its related muscles, bar = 500μm. AM: adrostral tissue mass, CB: mm. constrictores branchiales, DL: m. dilator laryngis, DP: diaphragmatobranchialis, GH: m. geniohyoideus, HAL: m. hyoangularis lateralis, HAM: m. hyoangularis medialis, IH: m. interhyoideus, IM: m. intermandibularis, LAB: mm. levatorae arcumm branchialium, LMA: m. l. m. articularis, LMEP: m. l. m. externus profundus, LMES: m. l. m. externus superficialis, LMI: m. l. m. internus, LML: m. l. m. lateralis, LMLP: m. l. m. longus profundus, LMLS: m. l. m. longus superficialis, ML: m. mandibulolabialias inferior, OH: m. orbitohyoideus, QA: m. quadratoangularis, SH: m. suspensoriohyoideus, SO: m. subarcualis obliquus, SR I: m. subarcualis rectus I, SR II-IV: m. subarcualis rectus II-IV, TP: m. tympanopharyngeus. NOTE: superficial muscles were removed from the right sides of A and B parts of the lamina. The mm. rectus abdominis, rectus cervicis, interhyoideus posterior and diaphragmatopraecordialis were removed to examine deep layers, and then are not pictured.

DISCUSSION

Larval morphology in the Leptodactylus fuscus group. The external morphology of larval stages has been described (and in many cases redescribed) for 23 species of this group: L. albilabris, L. bufonius, L. caatingae, L. camaquara, L. cunicularis, L. cupreus, L. elenae, L. fragilis, L. furnarius, L. fuscus, L. gracilis, L. jolyi, L. latinasus, L. longirostris, L. marambaiae, L. mystaceus, L. mystacinus, L. notoakitites, L. poecilochilus, L. spixi, L. syphax, L. tapiti, and L. troglodytes (Fernández and Fernández, 1921; Heyer, 1970; Lescure, 1972; Sazima, 1975; Sazima and Bokermann, 1978; Cei, 1980; Crombie and Heyer, 1983; Cascon and Peixoto, 1985; Solano, 1987; Hero, 1990; Muramatsu and Cruz, 1996; Rossa-Feres and Nomura, 1996; Eterovick and Sazima, 2000; Wogel et al., 2000; Langone and de Sá, 2005; Bilate et al., 2006; Prado and d’Heursel, 2006; Borteiro and Kolenc, 2007; de Sá et al., 2007; Motta et al., 2010; De Medeiros Magalhães et al., 2013). Leptodactylus plaumanni tadpoles share several features with most of the previously described larvae, such as the spotted and cryptic coloration, depressed body elliptic in dorsal view, body about 30–40% of the total length, sinistral spiracle, ventromedial vent tube, intestinal assa left sided, straight tail axis, tail muscles reaching the tail tip, and an oral disc with a wide rostral gap and LTRF 2(2)/3(1). Some distinct traits that could be useful to identify L. plaumanni tadpoles are the truncated snout in lateral view (also in L. camaquara, L. cupreus, L. fragilis, L. latinasus, and L. mystaceus), dorsal eyes (like in L. elenae, L. jolyi, L. mystaceus, L. syphax, and L. tapiti), dorsal fin originated anterior to the body-tail junction (also in L. marambaiae and L. notoaktites), labial tooth row P3 shorter than P1 (like in L. albilabris, L. gracilis, and L. latinasus), marginal papillae in a single row (like in L. marambaiae and L. notoaktites), submarginal papillae present in some specimens (also reported for L. bufonius and L. cupreus), and two slight indentations in the lower lip (although more pronounced in L. albilabris, L. bufonius, and L. mystacinus). Tadpoles of L. plaumanni are very similar to those of L. gracilis, a partially sympatric species traditionally reported as a sibling species only distinguishable through advertisement call. However, some variations are registered mainly in the oral disc, with L. gracilis larvae having marginal papillae double at commissures (single through the whole margin in L. plaumanni), submarginal papillae absent (present in some specimens), lower lip indentation absent (present), snout rounded in lateral view (truncated), and eyes dorsolateral (dorsal). On the other hand, the relationship between L. plaumanni and L. marambaie is supported by morphology, behavior and molecular data (de Sá et al., 2014) but some larval features are distinctive between them, with L. marambaie showing dorsolateral eyes (dorsal in L. plaumanni), lateral lines visible (not visible), dorsal fin with the highest point at the second third (almost straight), P1 complete (narrow gap), P3 as long as P1 (shorter), lower lip indentation absent (present), and submarginal papillae absent (present in some specimens).

Concerning the buccal cavity, the features of 10 species of the group are described to date: Leptodactylus caatingae, L. elenae, L. furnarius, L. fuscus, L. gracilis, L. latinasus, L. mystacinus, L. notoaktites, and L. spixi (Wassersug and Heyer, 1988; Prado and d'Heursel, 1996; Sandoval, 2004; Bilate et al., 2006; de Sá et al., 2007; Vera Candioti, et al. 2007; Miranda and Ferreira, 2009; De Medeiros Magalhães et al., 2013). Features of L. bufonius, L. camaquara, L. tapiti, and L. troglodytes were not explicitly described but are included in the matrix of larval characters by Miranda et al. (2014). Traits in L. plaumanni are similar to those of most other species of the group, with four lingual papillae, two pairs of infralabial papillae, two postnarial papillae, one pair of not branched lateral ridge papillae, and ventral velum with median notch and marginal projections. Some inter- and intraspecifically variable features concern the size and number of papillae and pustulations of the buccal floor and roof arenas, the shape of the median ridge, and the size of the marginal projections of the dorsal and ventral velum.

As regard to skeletal characters, information is available for 11 species of the group: Leptodactylus albilabris, L. bufonius, L. caatingae, L. elanae, L. fuscus, L. gracilis, L. labrosus, L. latinasus, L. longirostris, L. mystacinus, and L. notoaktites (Sokol, 1981; Fabrezi and Vera, 1997; Larson and de Sá, 1998; Haas, 2003; Vera Candioti et al., 2007; De Medeiros Magalhães et al., 2013); four more (L. camaquara, L. furnarius, L. tapiti, and L. troglodytes) were scored in Miranda et al. (2014) analysis. Shared features between L. plaumanni and previously described tadpoles of the group are the ascending process of the palato­quadrate attaching to the neurocranium in an angle of 80º–90º, and the posterior region of the palato­quadrate not surpassing the level of the attachment of that process. Other features are also observed in species of the L. pentadactylus group, namely the articular process distinct from the muscular process in lateral view, the wide and narrowly separated suprarostral corpora, and the open branchial process. Some interspecifically variable characters are the adrostral tissue mass (absent in L. camaquara, L. fuscus, L. latinasus, L. mystacinus, L. spixi, and L. troglodytes), and the ventrolateral projections of the corpus and ala of the suprarostral cartilage (which can be alternatively absent or fused to each other). The absence of tectal structures in L. plaumanni is unusual in tadpoles of the genus (and in tadpoles in general), and it could be due to poor staining of cartilages or to a late development.

Finally, the musculature is the less studied system in the Leptodactylus fuscus species group, and in anuran tadpoles in general; only six taxa of the group are described: L. bufonius, L. elenae, L. fuscus, L. gracilis, L. latinasus, and L. mystacinus, and outside the group data are restricted to L. chaquensis, L. latrans, and L. pentadactylus (Starrett, 1968; Palavecino, 1997, 2000; Haas, 2003; Alcalde, 2005; Vera Candioti et al., 2007). Tadpoles of L. plaumanni share two distinctive muscular characters with the analyzed species: m. hyoangularis medialis present (except in L. bufonius), and m. levator mandibulae externus superficialis inserted at the ala of the suprarostral cartilage. Many others features are variable: the m. submentalis is absent in the analyzed stages of L. plaumanni, L. elenae, L. gracilis, and L. latinasus, but it is present in specimens described by Palavecino (2000). The m. subarcualis rectus I has three heads in L. plaumanni, like in L. elenae and L. latinasus, but is depicted with two heads in L. gracilis, L. latinasus, and species of the L. latrans group. In L. plaumanni tadpoles, the m. subarcualis obliquus has one head inserted at the branchial process II, whereas in L. elenae and L. latinasus fiber muscles reach the ceratobranchial III; the species analyzed by Alcalde (2005) show two heads with close insertions at the ceratobranchials II and III. Finally, in all Leptodactylus species the m. subarcualis rectus II-IV is a single slip inserted in the ceratobranchial I; however in L. plaumanni it inserts at the connective tissue between the ceratobranchials II and III and only some distal fibers diverge reaching the ceratobranchial I.

Phylogenetic remarks. Larval characters in Leptodactylus were traditionally considered phylogenetically not very informative because of their high ecomorphological correlation (Wassersug and Heyer, 1988; Prado and d'Heursel, 2006; de Sá et al., 2014). However, attempts to analyzing them exclusively or as part of larger matrices provide re­solved (although often not congruent) relationship hypotheses (Heyer, 1978; Larson and de Sá, 1998; Ponssa, 2008; Miranda et al., 2014). This is in agreement with the increasing role of larval features in phylogenetic analyses of anurans in general (e.g., Haas, 2003; Púgener et al., 2003; Grant et al., 2006; Maglia et al., 2001).

Leptodactylus is recovered as a monophyletic clade in works with different sources of information (e.g., Ponssa, 2008; de Sá et al., 2014). The analysis by Larson and de Sá (1998) on larval chondrocra­nial characters, although not designed to test the monophyly of the genus, summarizes 12 characters common to the Leptodactylus species studied. All are shared by L. plaumanni tadpoles here examined, with the exception of the fusion of ceratobranchials to the hypobranchial plate, which in L. plaumanni involves ceratobranchials I, II and IV instead of all. These skeletal characters were later integrated with new buccal and chondrocranial characters by Miranda et al. (2014), resulting a matrix of 84 larval anatomical characters for 22 Leptodactylus species. Fifteen synapomorphies recovered by this analysis include a triangular buccal floor arena, slightly prominent projections on the posterior margin of the ventral velum, reduced postnarial arena, and quadratoorbital commissure present, among others. Although most of these features are indeed observed in L. plaumanni, this subject should be taken cautiously because the analysis of Miranda et al. (2014) fails to include species of genera historically related to Leptodac­tylus, such as Adenomera, Lithodytes, Hydrolaetare and the actual leiuperines (Bogart, 1974; de Sá et al., 2005; Frost, 2006; Pyron and Wiens, 2011; de Sá et al., 2014). In fact, some of these not included species do show several of the features attributed to Leptodactylus. For example, the shape of the buccal floor and postnarial arena are comparable in Physalaemus species (as the authors themselves have pointed out), and the quadratoorbital commissure is also present in this related genus (e.g., Fabrezi and Vera, 1997; Alcalde et al., 2006). The inclusion of some of the said taxa could change the phylogenetic relationships among the species analyzed, and which characters are recovered as synapomorphic and at which levels. Additionally, some characters (e.g., width of the ventromedial fusion of the corpus of the suprarostral, length of the Meckel’s cartilage, lateral processes of the ceratobranchials) need to be strictly redefined before scoring further species.

As regards to intrageneric relationships, the groups initially proposed by Heyer (1969) are in general recovered in phylogenetic analyses (e.g., Larson and de Sá, 1998; Ponssa, 2008, Ponssa et al., 2010; de Sá et al., 2014). The relationships among them are somewhat variable, but for instance six larval skeletal synapomorphies (all shared by L. plaumanni here examined) are recovered for the clade joining L. fuscus and L. pentadactylus groups (Larson and de Sá, 1998). Miranda et al. (2014) obtain a different topology, with the traditional groups mostly dismembered, and this is suggested by de Sá et al. (2014) to be result of a low number of taxa included and a high homoplasy of larval buccal cavity characters.

Finally, as regards to the interspecific relationships within the Leptodactylus fuscus group; a small clade of species including L. plaumanni, L. marambaiae, L. camaquara, L. cunicularis, L. furnarius, and L. tapiti, is recovered by de Sá et al. (2014). The group is characterized by several morphological larval features that give the tadpoles a streamlined aspect, such as the shallow body, proportionately long tail, and low, straight caudal fins, and some of these spe­cies were recognized as a morphological divergent group by Langone and de Sá (2005). Sazima and Bokermann (1978) had first suggested that those traits in some of the species could have a correlation with ecological features concerning the structural aspects of the nests and the liberation mechanism of tadpoles. Comprehensive, comparative approaches are required to examine the contribution of ecological features to morphological divergence in this and other distinct clades of the genus.

Acknowledgements

This work was financially supported by CONICET, MINCyT and UNT funds (PICT 2011-1524, PIP 0875, and CIUNT-G430). I am grateful to the herpetological collection of the Laboratorio de Genética Evolutiva (Instituto de Biología Subtropical, CONICET-UNaM) for the loan of specimens and to Instituto de Herpetología (Unidad Ejecutora Lillo, CONICET-FML) for providing working space for my research. Two anonymous reviewers and F. Vera Candioti made invaluable corrections and suggestions to early versions of the manuscript.

 

LITERATURE CITED

1. Ahl, E. 1936. Zweif neue Froscharten der Gattung Leptodactylus aus Südamerika. Veröffentlichungen aus dem Deutschen Kolonial- und Übersee-Museum in Bremen 1: 389-392.         [ Links ]

2. Alcalde, L. 2005. Descripción de la musculatura craneana en larvas de anuros de las familias Hylidae y Leptodactylidae. Revista del Museo de La Plata, Zoología 16: 1-12.         [ Links ]

3. Alcalde, L.; Natale, G.S. & Cajade, R. 2006. The tadpole of Physalaemus fernandezae (Anura: Leptodactylidae). Herpetological Journal 16: 203-211.         [ Links ]

4. Altig, R. & McDiarmid, R. W. 1999. Body Plan: Development and Morphology. 24–51. In: McDiarmid, R.W. and Altig, R. (Eds.), Tadpoles. The biology of anuran larvae. University of Chicago Press, Chicago and London.

5. Bilate, M.; Wogel, H.; Weber, L. & Abrunhosa, P. 2006. Vocalizações e girino de Leptodactylus spixi Heyer, 1983 (Amphibia, Anura, Leptodactylidae). Arquivos do Museu Nacional, Rio de Janeiro 64: 235-245.         [ Links ]

6. Böck, W.J. & Shear, C.R. 1972. A staining method for gross dissection of vertebrate muscles. Anatomischer Anzeiger 130: 222-227.         [ Links ]

7. Bogart, J.P. 1974. A karyosystematic study of frogs in the genus Leptodactylus (Anura: Leptodactylidae). Copeia 1974: 728-737.         [ Links ]

8. Borteiro, C. & Kolenc, F. 2007. Redescription of the tadpoles of three species of frogs from Uruguay (Amphibia: Anura: Leiuperidae and Leptodactylidae), with notes on natural history. Zootaxa 1683: 1-20.         [ Links ]

9. Carvalho, G.; Solé, M. & Kwet, A. 2005. Description of the tadpole of Leptodactylus plaumanni AHL, 1936 (Anura, Leptodactylidae) from Centro de Pesquisas e Conservação da Natureza Pró-Mata, Rio Grande do Sul, Brazil: 119–128. In: Solé Kienle, M., Diversität und Ernährung von Anuren im Ökosystem Araukarienwald: Fallstudie Pró-Mata. Doctoral Thesis Dissertation, Fakultät für Biologie der Eberhard Karls Universität Tübingen.

10. Cascon, P. & Peixoto, O.L. 1985. Observações sobre a larva de Leptodactylus troglodytes A. Lutz, 1926 (Amphibia, Anura, Leptodactylidae). Revista Brasileira de Biologia 45: 361-364.         [ Links ]

11. Cei, J.M. 1980. Amphibians of Argentina: 2:1-609. In: Monitore Zoológico Italiano (N.S.         [ Links ]).

12. Crombie, R. & Heyer, W. 1983. Leptodactylus longirostris (Anura: Leptodactylidae): advertisement call, tadpole, ecological and distributional notes. Revista Brasileira de Biología 43: 291-296.         [ Links ]

13. De Medeiros Magalhãnes, F.; Garda, A.; Amado, T. & de Sá, R. 2013. The tadpole of Leptodactylus caatingae Heyer and Juncá, 2003 (Anura: Leptodactylidae): external morphology, internal anatomy, and natural history. South American Journal of Herpetology 8: 203-210.         [ Links ]

14. de Sá R.O.; Heyer, W.R. & Camargo, A. 2005. A phylogenetic analysis of Vanzolinius Heyer, 1974 (Amphibia, Anura, Leptodactylidae): Taxonomic and life history implications. Arquivos do Museu Nacional Rio de Janeiro 63: 707-726.         [ Links ]

15. de Sá, R.; Langone, J. & Segalla, M. 2007. The tadpole of Leptodactylus notoaktites Heyer, 1978 (Anura, Leptodactylidae). South American Journal of Herpetology 2: 69-75.         [ Links ]

16. de Sá, R.O.; Grant, T.; Camargo, A.; Heyer, W.R.; Ponssa, M.L. & Stanley, E. 2014. Systematics of the neotropical genus Leptodactylus Fitzinger, 1826 (Anura: Leptodactylidae): phylogeny, the relevance of non-molecular evidence, and species accounts. South American Journal of Herpetology 9: 1-128.         [ Links ]

17. Echeverría, D.D. 1995. Microscopía electrónica de barrido del aparato bucal y de la cavidad oral de la larva de Leptodactylus ocellatus (Linnaeus, 1758) (Anura, Leptodactylidae). Alytes 12: 159-168.         [ Links ]

18. Eterovick, P. & Sazima, I. 2000. Description of the tadpole of Leptodactylus syphax, with a comparison of morphological and ecological characters of tadpoles and adults of the species in the L. pentadactylus group (Leptodactylidae, Anura). Amphibia-Reptilia 21: 341-350.         [ Links ]

19. Fabrezi, M. & Vera, R. 1997. Caracterización morfológica de larvas de anuros del noroeste argentino. Cuadernos de Herpetología 11: 37-49.         [ Links ]

20. Fernández, K. & Fernández, M. 1921. Sobre la biología y reproducción de algunos batracios argentinos. I Cystignatidae. Anales de la Sociedad Científica Argentina 91: 97-140.         [ Links ]

21. Frost, D.R.; Grant, T.; Faivovich, J.; Bain, R.H.; Haas, A.; Haddad, C.F.; de Sá, R.O.; Channing, A.; Wilkinson, M.; Donnellan, S.C.; Raxworthy, C.J.; Campbell, B.; Blotto, B.L.; Molder, P.; Drewes, R.C.; Nussbaum, R.A.; Lynch, J.D.; Green, D.M. & Wheeler, W.C. 2006. The amphibian tree of life. Bulletin of the American Museum of Natural History 291: 1-370.         [ Links ]

22. Gosner, K.L. 1960. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16: 183-190.         [ Links ]

23. Grant, T.; Frost, D.R.; Caldwell, J.P.; Gagliardo, R.O.; Haddad, C.F.; Kok, P.J.; Means, D. B.; Schargel, W.E. & Wheeler, W.C. 2006. Phylogenetic systematics of dart-poison frogs and their relatives (Amphibia: Athesphatanura: Dendrobatidae). Bulletin of the American Museum of Natural History 299: 1-262.         [ Links ]

24. Haas, A. 2003. Phylogeny of frogs as inferred from primarily larval characters (Amphibia: Anura). Cladistics 19: 23-89.         [ Links ]

25. Hero, J.M. 1990. An illustrated key to tadpoles occurring in the Central Amazon rainforest, Manaus, Amazonas, Brasil. Amazoniana 11: 201-262.         [ Links ]

26. Heyer, W.R. 1969. Studies on the genus Leptodactylus (Amphibia, Leptodactylidae). III. A redefinition of the genus Leptodactylus and a description of a new genus of leptodactylid frogs. Contributions in Science, Los Angeles County Museum of Natural History 155: 1-14.         [ Links ]

27. Heyer, W.R. 1970. Studies on the frogs of the genus Leptodactylus: (Amphibia: Leptodactylidae). VI. Biosytematics of the melanonotus group. Natural History Museum of Los Angeles County, Contributions in Science 191: 1-48.         [ Links ]

28. Heyer, W.R. 1978. Systematics of the fuscus group of the frog genus Leptodactylus (Amphibia: Leptodactylidae). Science Bulletin of the Natural History Museum of Los Angeles County 29: 1-85.         [ Links ]

29. Langone, J. & de Sá, R.O. 2005. Redescripción de la morfología larval externa de dos especies del grupo de Leptodactylus fuscus (Anura, Leptodactylidae). Phyllomedusa 4: 49-59.         [ Links ]

30. Larson, P.M. & de Sá, R.O. 1998. Chondrocranial morphology of Leptodactylus larvae (Leptodactylidae: Leptodactylinae): its utility in phylogenetic reconstruction. Journal of Morphology 238: 287-306.         [ Links ]

31. Lavilla, E.O. 1983. Sistemática de larvas de Telmatobiinae (Anura: Leptodactylidae): 343. In: Tesis Doctoral, Universidad Nacional de Tucumán, Argentina.         [ Links ]

32. Lescure, J. 1972. Contribution à l’étude des amphibiens de Guyane Française II. Leptodactylus fuscus (Schneider). Observations écologiques et éthologiques. Annales Musém d’Histoire naturelle de Nice 1: 91-100.

33. Maglia, A.M.; Púgener, L.A. & Trueb, L. 2001. Comparative development of anurans: using phylogeny to understand ontogeny. American Zoologist 41: 538-551.         [ Links ]

34. Miranda, N.E. & Ferreira, A. 2009. Morfologia oral interna de larvas dos gêneros Eupemphix, Physalaemus e Leptodactylus (Amphibia: Anura). Biota Neotropica 9: 165-176.         [ Links ]

35. Miranda, N.E.; Maciel, N.M.; Pêssoa Tepedino, K. & Sebben, A. 2014. Internal larval characters in anuran systematic studies: a phylogenetic hypothesis for Leptodactylus (Anura, Leptodactylidae). Journal of Zoological Systematics and Evolutionary Research.         [ Links ]

36. Motta, A.; Texeira da Silva, E.; Neves Feio, R. & Abdala Dergam, J. 2010. The tadpole of Leptodactylus cupreus Caramaschi, Feio and São Pedro, 2008 (Anura, Leptodactylidae). Zootaxa 2640: 65-68.         [ Links ]

37. Muramatsu, C. & Gonçalves da Cruz, C. 1996. Descriçao do girino de Leptodactylus marambaiae Izecksohn, 1976 (Amphibia: Anura: Leptodactylidae). Revista da Universidade Rural do Rio de Janeiro Série Ciência e Vida 18: 53-57.         [ Links ]

38. Palavecino, P. 1997. La musculatura mandibular e hioidea de Leptodactylus chaquensis (Anura: Leptodactylidae). Cuadernos de Herpetología 11: 1-6.         [ Links ]

39. Palavecino, P. 2000. Desarrollo de la musculatura mandibular e hioidea en Leptodactylinae del noroeste argentino: 132. Tesis Doctoral, Universidad Nacional de Tucumán, Argentina.         [ Links ]

40. Ponssa, M.L. 2008. Cladistic analysis and osteological descriptions of the frog species in the Leptodactylus fuscus species group (Anura, Leptodactylidae). Journal of Zoological Systematics and Evolutionary Research 46: 249-266.         [ Links ]

41. Ponssa, M.L.; Jowers, M.J. & de Sá, R.O. 2010. Osteology, natural history notes, and phylogenetic relationships of the poorly known Caribbean frog Leptodactylus nesiotus (Anura, Leptodactylidae). Zootaxa 2646: 1-25.         [ Links ]

42. Prado, C. & d’Heursel A. 2006. The tadpole of Leptodactylus elenae (Anura: Leptodactylidae), with the description of the internal buccal anatomy. South American Journal of Herpetology 1: 79-86.

43. Púgener, L.A.; Maglia, A.M. & Trueb, L. 2003. Revisiting the contribution of larval characters to an analysis of phylogenetic relationships of basal anurans. Zoological Journal of the Linnean Society 139: 129-155.         [ Links ]

44. Pyron, R.A. & Wiens, J.J. 2011. A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Molecular Phylogenetics and Evolution 61: 543-583.         [ Links ]

45. Rossa-Feres, D.C. & Nomura, F. 2006. Characterization and taxonomic key for tadpoles (Amphibia: Anura) from the northwestern region of São Paulo State, Brazil. Biota Neotropica 6: 1-26.         [ Links ]

46. Sandoval, M.T. 2004. Microanatomía oral and bucal de las larvas de tres especies de Leptodactylus (Anura, Leptodactylidae). Revista Española de Herpetología 18: 79-87.         [ Links ]

47. Sazima, I. 1975. Hábitos reprodutivos e fase larvária de Leptodactylus mystacinus e L. sibilatrix (Anura, Leptodactylidae). In: Master’s Thesis, Universidade de São Paulo, Brazil.

48. Sazima, I. & Bokermann, W. 1978. Cinco novas espécies de Leptodactylus do centro e sudeste brasileiro (Amphibia, Anura, Leptodactylidae). Revista Brasileira de Biología 38: 889-912.         [ Links ]

49. Sokol, O.M. 1981. The larval chondrocranium of Pelodytes punctatus, with a review of tadpole chondrocrania. Journal of Morphology 169: 161-183.         [ Links ]

50. Solano, H. 1987. Algunos aspectos de la biología reproductiva del sapito silbador Leptodactylus fuscus (Schneider) (Amphibia: Leptodactylidae). Amphibia-Reptilia 8: 111-128.         [ Links ]

51. Starrett, P. 1968. The Phylogenetic Significance of the Jaw Musculature in Anuran Amphibians. In: PhD Thesis, University of Michigan, Michigan, USA.         [ Links ]

52. Vera Candioti, M.F.; Brusquetti, F. & Netto, F. 2007. Morphological characterization of Leptodactylus elenae tadpoles (Anura: Leptodactylidae: L. fuscus group), from central Paraguay. Zootaxa 1435: 1-17.         [ Links ]

53. Wassersug, R.J. 1976a. Oral morphology of anuran larvae: terminology and general description. Museum of Natural History, University of Kansas 48: 1-23.         [ Links ]

54. Wassersug, R.J. 1976b. A procedure for differential staining of cartilage and bone in whole formaline fixed vertebrates. Stain Technology 5: 131-134.         [ Links ]

55. Wassersug, R.J. & Heyer, W.R. 1988. A survey of internal oral features of leptodactyloid larvae (Amphibia: Anura). Smithsonian Contributions to Zoology 457: 1-99.         [ Links ]

56. Wogel, H.; Abrunhosa, P. & Pombal Jr., J.P. 2000. Girinos de cincos espécies de anuros do Brasil (Amphibia: Hylidae, Leptodactylidae, Microhylidae). Boletim do Museu Nacional. Nova serie: Zoologia 427: 1-16.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons