SciELO - Scientific Electronic Library Online

 
vol.19 número1Cytocompatibility, cytotoxicity and genotoxicity analyses of dental implants índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

  • Não possue artigos citadosCitado por SciELO

Links relacionados

Compartilhar


BAG. Journal of basic and applied genetics

versão On-line ISSN 1852-6233

BAG, J. basic appl. genet. v.19 n.1 Ciudad Autónoma de Buenos Aires jan./jun. 2008

 

Introgresion of heterotic segment in an inbred line of maize (Zea mays L.)

Salerno, Juan Carlos¹; Kandus, Mariana¹; Boggio Ronceros, R.² and Almorza, David³

(1): Instituto de Genética «Ewald A. Favret»; INTA-Castelar. C.C. 25-1712, Castelar. Argentina.
(2): Facultad de Ciencias Agrarias y Forestales. Universidad Nacional de La Plata; Argentina.
(3): Departamento de Matemáticas. Universidad de Cádiz, España.

Corresponding author: Ing. Agr. Juan Carlos Salerno
Instituto de Genética «IGEAF». C.C. 25-1712; Castelar, Pcia. De Buenos Aires, Argentina.
E-mail: jsalerno@cnia.inta.gov.ar

ABSTRACT

In order to increase the efficiency in the production of maize hybrids seeds it is necessary high grain yield with a relative low cost of production. It needs an expansion of the basic knowledge of the heredity of the characters that may be developing new breeding technique.
The balanced lethal system (BLS) permit to study the relative contribution of different chromosome segments to hybrid vigour due to the heterocigozity of certain chromosome segments while the rest of the genome go to homocigozity for continuous selfing . In this way, theses segments can be transfer to inbreed lines in order to increase the grain yield and tassel size with pollen production.
The objective of this work was to transfer heterotic segments of a line regulated by a balanced lethal system (BLS), through crossing and backcrosses, to an inbred line derivate of a commercial hybrids ACA 2000 of closs pedigree, with the finality of increase the grain yield or pollen production.
The variance analysis and principal components showed a significance improvement in the grain yield and tassel size with pollen production in the inbred lines, with the heterotic segment of the BLS line.

INTRODUCTION

In order to increase the efficiency in the production of maize hybrids seeds it is necessary high grain yield with a relative low cost of production. It is very important to have inbred lines with high grain yield in order to do the single hybrid in maize (D. Duvick, 1977,1996,1999,2001). It needs an expansion of the basic knowledge of the heredity of the characters that may be developing new breeding technique.
The knowledge of quantitative genetics and the aplications in plant breeding was well documented (Falconer,1981; Hallauer and Miranda,1981; Wallace, 1970; Mather and Jinks,1971; Harth, 1980; Gallais, 1990; Russell, 1991; Wright, 1968,1969,1977,1978 and Carson,1967).
The developed of teoretical quantitative genetics models using mendelian concept in genetics, started with the Works of Cockerham (1954) and Kempthorne (1954) on epistasis and the work of Schnell (1963) on linkage. The genetics models for the estimation of genetics parameters and desing of coupling was developed by Comstock and Robinson (1948, 1952); Griffing (1956); Cockerham (1963); Gardner and Eberhart (1968) and others.
The hybrid vigor in maize, was considered one of the mayor innovation in XX century.
The heterosis studies is showing that colud be explained by the result of different combination of aleles of a gen due to the interaction of those genes (Whaley, 1964; Stuber, 1994; Stuber et.al., 1992; Gustafsson, 1946).
The overdominance hipótesis was explained between 1940 and 1950 (Crow, 1999).
Nevertheless the general acceptance of dominance hypothesis, studies of fenotipic estimations and molecular markers (QTLs) for grain yield, showed overdominance ( Lu et al, 2002; 2003).
The important o f dominant effect was recently confirmed for a high significance correlation between the level of heterozygisity and the fenotipic stability, especialy for grain yield. Some chromosomic regions presented QTLs of overdominance for seedling weight, plant heigh, number of kernels per plant and yield, suggesting pleiotropic effect on plant vigor ( Frascaroli et al, 2007).
Dijkhuizen (1996), find that after the F2 of open polination maize for 4 generations by random, only 38 of 95 original markers of QTL linked for the grain component, stay significantly in the population.
Birgham (1998), find this effect as parcial to complete dominante.
The study of genetic load in maize population was considered at the Instituto de Genética, finding balanced lethal system (BLS), linked to high grain yield, Salerno (1981, 1984, 1986,1989, 1994, 1997, 1998,1999, 2000, 2001,2007); Robredo y otros (1997); Boggio et. al (1997).
The balanced lethal system (BLS) permit to study the relative contribution of different chromosomic segment to the hyrbid vigor.
The intogresion of this systems in inbred lines with a good combinig ability, but loud grain yield or production of pollen, would be improvemento. The problem of linkage between lethal gen and other growh factors, as this kina of lethals is distribuited in different chromosome in maize, the selection against the letal recessive genes in a breeding program, remove favorables genes thata were in the same chromosome (Lindstrom (1920), Wentz and Goodsell (1929), Gustafsson (1946, 1947, 1953), Allard et al (1964), Band et al (1961, 1963), Jones (1945, 1952), Redei (1962), Apirion et al (1961).
In this work, it was studied the contribution of three balanced segment in an inbred line of maize of clossed pedigree, through the variance biometric analysis, consider de variables that involve the efficience of lines in the production of maize single hybrid.
The evaluation of principal component (CP1 and CP2) was made for a well variable component. Also, it was considered the correlation matriz coeficient; correlation matriz probability; selfvalio; self vectors for e1 and e2 and the correlations with the originals variable and the corresponding cofenetic correlation, through the multivariate analysis (Infostat,2004). The biplot graphic (Gabriel, 1971) permit to see the observations and variables in a minimun space, definning asociations between them.

MATERIALS AND METHODS

It was used an inbred line of maize of the Instituto de Genética, Argentina, that have a balance letal system with heterotic segment, denominated LPBLS14, that was crossed with a normal inbred line derivated of the single commercial hybrid ACA2000 (LMACA2000) of closed pedigree. The cross was made by hand, using the normal inbred lines as a female. In the next three generations, it was made de backcrosses one, two three, to the normal inbred line (LMACA2000).
After that it was evaluated the variables involved in a complete block design trials, with three replications.
It was made the variance statistic análisis, and the principal component using Infostat system ( Infostat,2004) of the line LMACA2000, Line LPBLS14-F1-R1-R2-R3, involved the matriz of correlation/Coefficient; matriz of correlation/ Probabilities; selfvalue; selfvectors and Correlations with the original variables and cofenetics, for the variables grain yield in kg/ha (KG/HA), ear lenght in mm.(LE), 100 kernells weight in grams (P100K), Number of grain ear row (NH), grain deepht (TG) and cob percentaje in % (%MARLO) in a one way; and in other way, the variables plant height in cm. (HP), ear inserction height in cm. (HE), tassel lenght in mm. (LP) and number of tassel Branch (NRP).

RESULTS AND DISCUSSION

The table 1 showed the variance analysis for grain yield variable in kg/ha for the line LMACA2000 per-se, line LPBLS14 per-se, F1 and backcrosses R1, R2, R3.

TABLE 1.- Variance analysis for line LMACA2000-line LPBLS14-F1-R1-R2-R3

TABLE 2.- Grain yield for line LMACA2000-line LPBLS14-F1-R1-R2-R3.

It was observed that the grain yield of the backcrosses was significance higher than the line LMACA2000 per-se

The table 3 showed the variance analysis for ear length in mm. for the line LMACA2000 per-se, line LPBLS14 per-se, F1 and backcrosses R1, R2, R3.

TABLE 3.- Variance analysis for line LMACA2000-line PBLS14-F1-R1-R2-R3

The table 4 showed the ear lenght and the respective Tukey test, for determine the statistic differences.

TABLE 4.- Ear lenght in mm. for line LMACA2000-Line LPBLS14-F1-R1-R2-R3.

The ear lenght of backcrosses was higher than the line LMACA2000 per-se.

The table 5 showed the variance analysis for 100 kernells weight in grams, for the line LMACA2000 per-se, line LPBLS14 per-se, F1 and backcrosses R1, R2, R3.

TABLE 5.- Variance analysis for line LMACA2000-line PBLS14-F1-R1-R2-R3

The table 6 showed the 100 kernells weight and the respective Tukey test, for determine the statistic differences.

TABLE 6.- 100 kernells weight in gr., for the line LMACA2000-line LPBLS14-F1-R1-R2-R3.

It was observed that the 100 kernells weight in gr. of the backcrosses was significance higher than the line LMACA2000 per-se.

The table 7 showed the variance analysis of Number of grain ear row, for the line LMACA2000 per-se, line LPBLS14 per-se, F1 and backcrosses R1, R2, R3.

TABLE 7.- Variance analysis for line LMACA2000-line PBLS14-F1-R1-R2-R3

The table 8 showed the number of grain ear row and the respective Tukey test, for determine the statistic differences.

TABLE 8.- Number of grain ear row, for the line LMACA2000- line LPBLS14-F1-R1-R2-R3.

It was observed that The number of ear row of the backcrosses R1 and R2, was higher than the line LMACA2000 per-se and the R3 was less than the same line.

The table 9 showed the variance análisis of Grain deepht (TG), for the line LMACA2000 per-se, line LPBLS14 per-se, F1 and backcrosses R1, R2, R3.

TABLE 9.-Variance Analysis for Line LMACA2000-Line LPBLS14-F1-R1-R2-R3.

The table 10 showed the grain deepht and the respective Tukey test, for determine the statistic differences.

TABLE 10.- Grain deepht in mm., for Line LMACA2000- Line LPBLS14-F1-R1-R2-R3.

It was observed that The grain deepht of the backcrosses R1, R2 and R3, was higher than the line LMACA2000 per-se.

The table 11 showed the variance analysis of Cob percentaje in %, for the line LMACA2000 perse, line LPBLS14 per-se, F1 and backcrosses R1, R2, R3.

TABLE 11.- Variance Análisis for Line LMACA2000-Line LPBLS14-F1-R1-R2-R3.

The table 12 showed the cob percentaje and the respective Tukey test, for determine the statistic differences.

TABLE 12.- Cob porcentaje for Line LMACA2000-Line LPBLS14-F1-R1-R2-R3.

It was observed that the cob porcentaje was of the backcrosses R1, R2 and R3, was minor than the line LMACA2000 per-se.

The table 13 showed the variance analysis of Plant height in cm. (HP), for the line LMACA2000 per-se, line LPBLS14 per-se, F1 and backcrosses R1, R2, R3.

TABLE 13.- Variance Análisis for Line LMACA2000-Line LPBLS14-F1-R1-R2-R3.

The table 14 showed the Plant height and the respective Tukey test, for determine the statistic differences.

TABLE 14.- Plant height in cm. for Line LMACA2000- Line LPBLS14-F1-R1-R2-R3.

It was observed that the plant height was of the backcrosses R1, R2 and R3, was higher than the line LMACA2000 per-se.

The table 15 showed the variance analysis of ear inserction height in cm. (HE), for the line LMACA2000 per-se, line LPBLS14 per-se, F1 and backcrosses R1, R2, R3.

TABLE 15.- Variance analysis for line LMACA2000-line PBLS14-F1-R1-R2-R3

The table 16 showed the ear inserction height and the respective Tukey test, for determine the statistic differences.Análisis de la Variancia para la Línea LMACA2000-Línea LPBLS14-F1-R1- R2-R3

TABLE 16.- Ear inserction height in cm. for Line LMACA2000-Line LPBLS14-F1-R1-R2-R3.

It was observed that the ear inserction height of the backcrosses R1, R2 and R3, was higher than the line LMACA2000 per-se.

The table 17 showed the variance analysis of tassel lenght in mm. (LP) for line LMACA2000 per-se, line LPBLS14 per-se, F1 and backcrosses R1, R2, R3.

TABLE 17.- Variance analysis for line LMACA2000-line PBLS14-F1-R1-R2-R3

The table 18 showed the tassel lenght and the respective Tukey test, for determine the statistic differences.

TABLE 18.- Tassel lenght for Line LMACA2000-Line LPBLS14-F1-R1-R2-R3.

It was observed that the tassel lenght of the backcrosses R1, R2 and R3, was higher than the line LMACA2000 per-se.

The table 19 showed the variance analysis of number of tassel Branch (NRP) for line LMACA2000 per-se, line LPBLS14 per-se, F1 and backcrosses R1, R2, R3.

TABLE 19.- Variance analysis for line LMACA2000-line PBLS14-F1-R1-R2-R3

The table 20 showed the number of tassel Branch and the respective Tukey test, for determine the statistic differences.

TABLE 20.- Number of tassel Branch for Line LMACA2000- Line LPBLS14-F1-R1-R2-R3.

It was observed that the number of tassel Branch of the backcrosses R1, R2 and R3, was higher than the line LMACA2000 per-se.

In addition , it was made the principal component using Infostat system (Infostat,2004) of the line LMACA2000, Línea LPBLS14-F1-R1-R2-R3, involved the matriz of correlation/Coefficient; matriz of correlation/Probabilities; selfvalue; selfvectors and Correlations with the original variables and cofenetics, for the variables grain yield in kg/ha (KG/HA), ear lenght in mm.(LE), 100 kernells weight in grams (P100K), Number of grain ear row (NH), grain deepht (TG) and cob percentaje in % (%MARLO) in a one way, showed in table 21 a,b,c,d,e; and in other way, the variables plant height in cm. (HP), ear inserction height in cm. (HE), tassel lenght in mm. (LP) and number of tassel Branch (NRP), showed in table 22 a,b,c,d,e.

TABLE 21a.- Matriz of correlation and coefficient for the variables KGHA, P100K, %MARLO, TG, LE, NH

TABLE 21b.- Matriz of correlation and probabilities for the variables KGHA, P100K, %MARLO, TG, LE, NH.

TABLE 21c.- Self values for the variables KGHA, P100K, %MARLO, TG, LE, NH.

TABLE 21d.- Self vectors for the variables KGHA, P100K, %MARLO, TG, LE, NH.

TABLE 21e.- Correlations with the original variables and the cofenetic correlation for the variables KGHA, P100K, %MARLO, TG, LE, NH.

TABLE 22a.- Matriz of correlation and coefficient fo the variables HP HE LP and NRP.

TABLE 22b.- Matriz of correlation and probabilities for the variables HP HE LP and NRP.

TABLE 22c.- Self values for the variables HP HE LP NRP.

TABLE 22d.- Selfvectors for the variables HP HE LP NRP.

TABLE 22e.- Correlations with the original variables and the cofenetic correlation for the variables HP HE LP NRP.

In the figure 1 it was showed the biplot of the relation between the genotypes and genotipos and the original variables.


Fig. 1.-: biplot of relation between the genotypes and the variables KGHA, P100K, %MARLO, TG, LE, NH.

The principal component CP1 y CP2 explained 80% of the datum variability. It was found significance positive correlation between grain yield (KGHA), ear lenght in mm.(LE),100 kernells weight in grams (P100K) and grain deepht (TG), meanwhile the KGHA and TG was correlations in a negative form withn %MARLO. In addition, it was observed no correlation between KGHA and NH.
The variables KGHA, P100K, TG and LE were asociated to CP1, meanwhile NH and %MARLO were associated to CP2. In other way, it was analysed the principal component of the variables plant height in cm. (HP), ear inserction height in cm. (HE), tassel lenght in mm. (LP) and number of tassel Branch (NRP), showed in table 22 a,b,c,d,e.

In the figure 2 it was showed the biplot of the relation between the genotypes and genotipos and the original variables.


Fig. 2.-: biplot of relation between the genotypes and the variables HP HE LP NRP.

It was showed that the principal component CP1 and CP2 explained 90% of the datum variability. It was found the significance positive correlation between the plant height (HP) and ear inserction height (HE), and between the tassel lenght in mm. (LP) and number of tassel Branch (NRP). It was no correlation between the variables HP-HE and LP. The variables HP, HE and NRP were associated in a positive way to CP1, meanwhile the LP was associated in a positive way to CP2.

These results showed the importance of detection of quantitative traits loci, that involve the heterosis effect in maize, as was demostrated bay Stuber et. al, 1992; Graham et al, 1997).

CONCLUSION

In the research presented here, it was observed a high grain yield, and yield component in the backcrosses of the inbred line LMACA2000, with the introgresion of the heterotic chromosome segment of the line LPBLS14. The classical quantitative genetic analyse revealed a high level of heterosis of the chromosome segment found in the imbred line denominated LPBLS14, transferred to an inbred line of maize.
In this way, the identification of chromosome segment with heterosis effect is an important way in plant breeding.

LITERATURE CITED

1. Allard, R. W., and A. D. Bradshaw. (1964). Implications of genotype-environment interactions in applied plant breeding. Crop Science, 4:503-508.         [ Links ]

2. Ajmone-Marsan, P; Monfredini, G; Ludwig, WF; Melchinger, AE; Franceschini, P; Pagnotto, G; Motto, M.. (1995). In an elite cross of maize a major quantitative trait locus controls one-fourth of the genetic variation for grain yield. Theor Appl Genet 90-No.3-4:415-424.         [ Links ]

3. Apirion, D. and D. Zohary.(1961). Chlorophyll lethal in natural populations of the orchard grass (Dactylis glomerata L.). Genetics, 46: 393-399.         [ Links ]

4. Band, H.T. and P.T. Ives. (1961). Correlated changes in environment and lethal frequency in a natural population of Drosophila melanogaster.Proc. Nat. Acad. Sci. U.S.A., 47: 180-185.         [ Links ]

5. Band, H. T.. (1963). Genetic structure of populations.II. Viabilities and variances of heterozygotes in constant and fluctuating environments. Evolution, 17: 307-319.         [ Links ]

6. Barucha - Reid, A.T. (1960). Elements of the Theory of Markov processes and their Applications. New York, Mc Graw-Hill.         [ Links ]

7. Bingham, E.T. (1998). Role of chromosome blocks in heterosis and estimates of dominance and overdominance. In: Lamkey KR, Staub JE (eds). Concepts and breeding of heterosis un crop plants. Crop Sci. Soc. Am., Madison, Wisconsin, USA. Pp: 71-87.         [ Links ]

8. Boggio, R., O. Sorarrain, J. C. Salerno, and E. A. Favret (1997). Theoretical Analysis of Lethal Factors in Plant Populations. Mathematical Biosciences, 140, 85-99.         [ Links ]

9. Bosso, J. A.; O. Sorarrain, and E. A. Favret. (1969). Applications of absorbent Markov chains to sib mating populations with selection. Biometrics, 22(1):17 - 26.         [ Links ]

10. Burham, Ch. R. (1993), Balanced lethal from chromosome 6, Maize Genetics Cooperation Newsletter No 67 p 101.         [ Links ]

11. Carson, H. L. (1967). Permanent heterozygosis. Evolutionary Biology, V. I.: 168-193.         [ Links ]

12. Cockerham C.C. 1954. An extension of the concept of partitioning hereditary variance for analysis of covariance's among relatives when epitasis is present. Genetics 39: 859-882.         [ Links ]

13. Cockerham D.M. 1963. Estimation of genetic variances. In W.D. Hanson and H.F. Robinson (eds). Statistical Genetics and Plant Breeding. National Academy of Sciences. National Research Council Publication 982. W:D., pp. 53-54.         [ Links ]

14. Comstock, R.E. and H.F. Robinson. (1948). The components of genetic variance in populations of biparental progenies and their use in estimating the average degree of dominance. Biometrics 4: 254-268.         [ Links ]

15. Comstock, R.E. and H.F. Robinson. (1952). Estimation of average dominance of genes. In J.W. Gowen (ed.). heterosis. ISCPress. USA.         [ Links ].

16. Crow, J. F.. (1948). Alternative hypotheses of hybrid vigour. Genetics,33: 477-487.         [ Links ]

17. Crow, J. F.. (1999). Dominance and overdominance. In: Coors JG, Pandey, S (eds.). genetics and exploitation of heterosis in crops. Am. Soc. Agron., Crop Sci. Soc. Am., Soil Sci Soc. Am., Inc, Madison. Wisconsin, USA. pp:49-58.         [ Links ]

18. Crumpacker, D. W. (1967). Genetic loads in maize (Zea mays L.) and other crossfertilised plants and animals. Evolutionary Biology 1: 396-415.         [ Links ]

19. Dijkhuizen, A. , D.W. Dudley and T.R. Rocheford (1996). Marker-QTL linkages estimated using F2 and random -mated generations. Illinois Corn Breeders School. 32: 144-157.         [ Links ]

20. Duvick, D. (1977). Genetic rates of gain in hybrid maize yields during the past 40 years. Maydica. XXII: 187-196.         [ Links ]

21. Duvick, D. (1996). Plant breeding, an evolutionary concept. Crop Science 36: 539-548.         [ Links ]

22. Duvick, D. (1999). Commercial Strategies for Exploitation of heterosis. The genetics and Exploitation of Heterosis in Crops. ASACSSA- CIMMYT. Chapter 27: 295-304 .         [ Links ]

23. Duvick, D. (1999). Heterosis: feeding people and protecting natural resources. In: Lamkey KR, Staub JE (Eds). Concepts and breeding of heterosis in crop plants. Crop Sci. Soc. Am., Madison, Wisconsin, USA. Pp: 19-29.         [ Links ]

24. Duvick, D.(2001).Biotechnology in the 1930. The development of hybrid maize. Nature Reviews genetics 2: 69-74.         [ Links ]

25. Emerson, R. A., G. W. Beadle, and A. C. Fraser. (1935). A summary of linkage studies in maize. Cornell univ. Agric. Exp. Sta. Mem., No. 180.         [ Links ]

26. Favret, E. A. and W. Godeck. (1959). Índice de mutación espontánea en cebada y otras gramíneas. Revista de Investigaciones Agrícolas T. XIII No 3.         [ Links ]

27. Falconer, D. S.. (1981). Introduction to quantitative genetics. 2nd. Edition. Longman editor.         [ Links ]

28. Favret, E. A. and G. Ryan. (1966). Possible use of permanent heterozygosis in barley breeding. Barley Newsletter. 10: 122-123.         [ Links ]

29. Fisher, R.A. (1928). The possible modifications of the response of the wildtype to recurrent mutations. Am. Nat. 62:115-126.         [ Links ]

30. Frascaroli E, M. A. Canè, P. Landi, G. Pea, L. Gianfranceschi, M. Villa, M. Morgante, M. E. Pè. (2007)- Classical genetic and quantitative trait Loci analyses of heterosis in a maize hybrid between two elite inbred lines. Genetics, 176: 625-644.         [ Links ]

31. Freire-Maia, N.: (1963). Carga genética, o preço da evolução. In C, Pavan and A. B. da Cunha (2d.) Genética. Companhia Editora Nacional, São Paulo, Brasil.         [ Links ]

32. Gabriel, K.R.. (1971). The biplot graphic display of matrices with applications to principal component analysis. Biometrika, 58(3): 453-467.         [ Links ]

33. Gallais, A.. (1990). Théorie de la selection en amélioration des plantes. Masson Laris. 588 pp.         [ Links ]

34. Gardner, C.O. and S. A. Eberhart.(1968). Analysis and interpretation of the variety cross diallel and related populations. Biometrics 22: 439-451.         [ Links ]

35. Graham, G.I., D.W. Wolff and C. W. Stuber. (1997). Characterization of a yield quantitative trait locus on chromosome five of maize by fine mapping. Crop Sci. 37: 1601-1610.         [ Links ]

36. Griffing, B.(1956). Concept of general and specific combining ability in relation to diallel crossing systems. Australian Jour. Biol. Sci. 9:463-493.         [ Links ]

37. Gustafsson, A. (1946). The effect of heterozygosis on variability and vigour. Hereditas. 32: 263-286.         [ Links ]

38. Gustafsson, A. (1947). The advantageous of deleterious mutations. Hereditas. 33: 575. (Abst.         [ Links ]).

39. Gustafsson, A. (1953). The cooperation of genotypes in barley. Hereditas. 39: 1-18.         [ Links ]

40. Hart, D.L. (1980). Principles of population genetics. Sinauer Assoc. Inc. Sunderland M.A.         [ Links ]

41. Hallauer,A.R.andJ.B.Miranda.(1981).Quantitative genetics in maize breeding. IsuPress. USA.         [ Links ]

42. Infostat (2004). Infostat/p, versión 2004. manual del usuario. Grupo Infostat, FCA, U.N. Córdoba. 1º. Edición, editorial Brujas, Argentina.         [ Links ]

43. Jones, D. F.. (1945). Heterosis resulting from degenerative changes. Genetics, 30: 527- 542.         [ Links ]

44. Jones, D. F.. (1952). Plasmagenes and chromogenes in heterosis. In J. W. Gowen (ed.), Heterosis, pp. 224-225. Ames, Iowa, Iowa State College Press.         [ Links ]

45. Kacser, H., J. A. Burns (1981). The molecular basic of dominance. Genetics, 97: 639-666.         [ Links ]

46. Kemeny, J. and Snell, L. (1960). Finite Markov Chains. Princeton, NewJersey:Van Nostrand.         [ Links ]

47. Kempthorne, O. (1954). The correlation between relatives in a random mating population. Proc. Roy. Soc. London, B. 143: 103-113.         [ Links ]

48. Kiesselback, T.A. (1951). A half-century of corn research. Am. Sci. 39:629-655.         [ Links ]

49. Lindstrom, E. W.. (1920). Chlorophyll factors in maize. Their distribution on the chromosomes and relation to the problem of inbreeding. J. Heredity,11: 269-277.         [ Links ]

50. Lu, H., J. Romero-Severson, R. Bernardo. (2002). Chromosomal regions associated with segregation distortion in maize. Theor. Appl. Genet. 105:622-628.         [ Links ]

51. Lu, H., J. Romero-Severson, R. Bernardo. (2003). Theory basic of heterosis explored by simple sequence repeat markers in a random-mated maize population. Theor. Appl. Genet. 107:494-502.         [ Links ]

52. Luna, J.T. y J. Safont Lis. (1978). El maíz en la Argentina. Vulnerabilidad y recursos genéticos. Ciencia e investigación, Tomo 34, No. 3-4-5-6: 83-90.         [ Links ]

53. Mangelsdorf, A. J. (1952). Gene interaction in heterosis. In: Gowen, J.W. (ed.). heterosis: Iowa State college Press, Ames, Iowa, USA, pp:321-329.         [ Links ]

54. Mather, K. and J.L. Jinks. (1971). Biometrical genetics, 2nd. ed. Champman&Hall, London.         [ Links ]

55. Mihaljevic R., H. Friedrich Utz and E. Albrecht Melchinger* . No Evidence for Epistasis in Hybrid and Per Se Performance of Elite European Flint Maize Inbreeds from Generation Means and QTL Analyses. Crop Sci 45:2605-2613 (2005)        [ Links ]

56. Muller, H.J. (1950) Our load of mutations. Am.J.Hum.Gen. 2: 111-176        [ Links ]

57. Redei, G. P. (1962). Single locus heterosis. Z. Vererbungsl, 93: 164-170.         [ Links ]

58. Rhodes, D., C. Jug, WJ Yang, Y. Samaras. (1992). Plant metabolism and heterosis. Plant Breed Rev., 10: 53-91.         [ Links ]

59. Riman, L. (1963). A synoptic survey of maize genes. Maydica, 8: 99-123.         [ Links ]

60. Robredo, C.G.; R. D. Ríos, A. M. Ferri, D. G. Díaz, J. C. Salerno y A. G. Reid. (1997). Caracterización molecular de un segmento cromosómico relacionado al vigor híbrido la línea BLS1 de maíz. VI Congreso Nacional del maíz; Pergamino.         [ Links ]

61. Russel, W.A.. (1991). Genetic improvement of maize yields. Adv. Agron., 33:245-298.         [ Links ]

62. Salerno J. C. (1981). Utilización de los sistemas letales balanceados en maíz. Acta Jornadas de genética Aplicada del Noroeste Argentino. SAG. 43-51.         [ Links ]

63. Salerno, J. C. and E. A Favret. (1984). Introduction among lethal genes in two lines of maize (Zea mays L.) Genetics. 107 (1). 93. (abst.         [ Links ]).

64. Salerno, J. C., E. A. Favret, and C. O. Gardner. (1986). Heterotic regions in the maize genome. Agronomy journal, 80. (abst.         [ Links ]).

65. Salerno J. C. (1989) Aprovechamiento de los factores letales en el mejoramiento genético. Bol. Genét. 15: 67-72.         [ Links ]

66. Salerno, J.C. y D. G. Díaz. (1992). Un Sistema Letal Balanceado en el Cromosoma 6 de Maíz. Acta resumen XXIII Congreso Argentino de Genética, Pergamino.         [ Links ]

67. Salerno J.C. y Favret E. A., 1994.17 Años de letales balanceados en maíz. Mendeliana. Vol. XI No.1. 82-85.         [ Links ]

68. Salerno J. C., D. G. Díaz, C. Robredo, R. Ríos, A. G. Reid, R. Boggio Ronceros and O. Sorrarain. (1997). Lethal genes associated with grain yield in inbred lines of maize. CIMMYT. Proceeding The genetics and Exploitation of Heterosis in Crops. ASACSSA- CIMMYT. México.         [ Links ].

69. Salerno J.C.; D. G. Díaz, C. Robredo, R. Boggio y O. Sorarrain.(1998).Explotación de la Carga genética en la producción de semilla híbrida en maíz. IAMFE-Simposio Internacional de Experimentación de la Maquinaría Agrícola-Castelar: pág. 256-262.         [ Links ]

70. Salerno, J. C.; R. Boggio, R. y O. Sorarrain. (1999) Análisis teórico de rendimiento en plantas reguladas por factores letales. Revista de Agricultura. Piracicaba. San Pablo, Brasil . Vol.74-No.2-Set. Pág. 137-156.         [ Links ]

71. Salerno, J. C. ; D. G. Díaz, C. Robredo, R. Boggio y O. Sorarrain. (2000). La Carga genética en el mejoramiento genético del maíz. Actas del XVIII Reunión Latinoamericana del Maíz. CIMMYTEMBRAPA. Sete Lagoas, Minas Gerais, Brasil.         [ Links ]

72. Salerno, J. C.; D. G. Díaz, M. G. Pacheco, E. D. Kreff, R. Boggio y O. Sorarrain, O.(2001). Contribución de segmentos cromosómicos al vigor híbrido en maíz. VII Congreso Argentino de Maíz. Pergamino.         [ Links ]

73. Salerno, J. C.; M. Kandus, R. Boggio , O. Sorarrain, C. Gonzalez and D. Almorza. (2007). Genetics and statistical association between lethal alleles and quantitative yield factors in maize (Zea mays l.). Journal of Basic and Applied Genetics (BAG), Vol.XVIII, No. 1:Pág. 7-13, 2007.         [ Links ]

74. Schnell, F.W. (1963). The covariance between relatives in the presence of linkage. In W.D. Hanson and H.F. Robinson (eds). Statistical Genetics and Plant Breeding. National Academy of Scs.. NRC. Publicación 982. W.D.C. pp: 468-483.         [ Links ]

75. Sorarrain, O. M. ; R. Boggio, and J. C. Ocampo. (1980) Continuous and discontinuous Markov chains for mastitis infection. Math. Biosci. (52), 277-287.         [ Links ]

76. Sorarrain, O. M. ; R. Boggio, J. L. Pousa and E. A. Favret. (1983) Application of absorbent Markov Chains for a Selfing Model of two Independent Loci. J. Theor. Biol. (1983) 103, 173-180.         [ Links ]

77. Stuber, C. W., S. E. Lincoln, D. W. Wolff, T. Helentjaris, E. S. Lander. (1992). Identification of genetic factors contributing to Heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics 132: 823-839.         [ Links ]

78. Stuber, C. W. (1994). Heterosis in plant breeding. Plant Breeding Reviews, No 12, 227-251.         [ Links ]

79. Stuber, C. W. (1995) Mapping and manipulating quantitative traits in maize. Trends Genet., 11: 477-481.         [ Links ]

80. Wallace, B. (1970). Genetic load. Its Biological and Conceptual Aspects. Prentice-Hall, Inc. Englewood Cliffs, N.J. Chapter 8, p. 52.         [ Links ]

81. Weijer, J.. (1952). A catalogue of genetic maize types together with a maize bibliography. Bibl. Genetics,50: 294. (abst.         [ Links ]).

82. Wentz, J. B., and D. F. Goodsell. (1929). Recessive defects and yield in corn. J. Agric. Res., 38:0505-510.         [ Links ]

83. Whaley, W. (1964). Physiology of gene action in hybrids. Heterosis. Gowen ed. Hafner, N.Y.         [ Links ].

84. Wright, S. (1968,1969,1977,1978). Evolution and the Genetics of Populations.-Vol. 1,2,3,4. University of Chicago Press.         [ Links ]

ACKNOWLEDGEMENTS

The authors thank to INTA and ANPCyT for the grants PICT10995. This paper is a part of the Thesis for the PHD at UNLP.

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons