SciELO - Scientific Electronic Library Online

 
vol.53 issue2Evaluation of tolerance to Fusarium oxysporum and Fusarium solani in Virginia-type tobaccoEffect of rearing system and sex on the composition and fatty acid profile of Andinoacara rivulatus meat from Ecuador author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

  • Have no cited articlesCited by SciELO

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista de la Facultad de Ciencias Agrarias. Universidad Nacional de Cuyo

On-line version ISSN 1853-8665

Rev. Fac. Cienc. Agrar., Univ. Nac. Cuyo vol.53 no.2 Mendoza Dec. 2021

 

Original article

Predation capacity and larval development of Ceraeochrysa claveri (Neuroptera: Chrysopidae) fed with Raoiella indica (Acari: Tenuipalpidae)

Capacidad de depredación y desarrollo larval de Ceraeochrysa claveri (Neuroptera: Chrysopidae) alimentado con Raoiella indica (Acari: Tenuipalpidae)

Martín Palomares-Pérez1  * 

Yadira Contreras-Bermúdez1 

Pedro Fabián Grifaldo-Alcántara2 

Rosa Elia García-García1 

Manuel Bravo-Núñez1 

Hugo Cesar Arredondo-Bernal1 

1 Centro Nacional de Referencia de Control Biológico, SENASICA-DGSV Km 1.5 Carretera Tecomán-Estación FFCC, Colonia Tepeyac, Colima México. C.P. 28110.

2 Universidad de Guadalajara. Centro Universitario de la Costa Sur. Departamento de Producción Agrícola. Av. Independencia Nacional No. 151. Autlán de la Grana. Jalisco. C. P. 48900.

Abstract

Ceraeochrysa claveri Navás (Neuroptera: Chrysopidae) is a predator found in several agricultural ecosystems and feeds on insects and phytophagous mites. Its high reproductive potential and forage capacity makes it a candidate for biological control of agricultural pests. Raoiella indica Hirst (Acari: Tenuipalpidae) is an important pest that can damage several species of palms, in particular, Cocos nucifera L. Given the scarcity of available knowledge about the biological aspects of Chrysopidae fed with phytophagous mites, the present work aimed to study the larval development of C. claveri fed mainly with R. indica, in order to obtain information that would be of help in the integrated management of this pest. The evaluation was performed in the F0 generation. Larva 3 is the instar that consumes the most mites (F value = 32.99; P > 0.0001) (L3: 46.80 ± 10.12 a; L2: 9.80 ± 1.23 b; L1: 9.40 ± 1.58 b). C. claveri did not complete larval development when fed only with R. indica. Larval instars L1, L2 and L3 lived 7.4 ± 2.2, 7.6 ± 1.9 and 9.0 ± 3.9 days, respectively. The larvae that reached the pupal stage failed to grow further. When adding Sitotroga cerealella Olivier (Lepidoptera: Gelechidae) eggs to the diet, the development lasted 7.9 ± 0.2, 7.4 ± 0.8, 6.5 ± 0.9 and 13.6 ± 0.9 days for L1, L2, L3 and pupae, respectively. The adults lived on average 6.7 ± 4.9 days. The sexual ratio was rt = 0.42. According to the conditions under which the experiment was carried out, it can be inferred is that C. claveri cannot complete its development by feeding only on R. indica, and that it thus consumes this mite as an occasional prey.

Keywords: Predator; Biological control; Red mite; Phytophagous; Biological cycle

Resumen

Ceraeochrysa claveri Navás (Neuroptera: Chrysopidae) es un depredador que se encuentra en varios ecosistemas agrícolas y se alimenta de insectos y ácaros fitófagos. Su alto potencial reproductivo y capacidad depredadora lo convierten en un candidato para el control biológico de plagas agrícolas. Raoiella indica Hirst (Acari: Tenuipalpidae) es una plaga importante que puede dañar varias especies de palmeras, en particular, Cocos nucifera L. Debido a la escasa información sobre aspectos biológicos de crisópidos alimentados con ácaros fitófagos, se planteó el presente estudio con el objetivo de conocer el desarrollo larval de C. claveri teniendo como presa principal a R. indica. Esta información es necesaria para considerarlo en el manejo integrado de esta plaga. La evaluación se realizó sobre la generación F0. La larva 3 es el instar que mayor cantidad de ácaros consume (F value = 32,99; P > 0,0001) (L3: 46,80 ± 10,12 a; L2: 9,80 ± 1,23 b; L1: 9,40 ± 1,58 b). C. claveri no completó su desarrollo larval al alimentarse únicamente con R. indica viviendo los ínstares larvales 7,4 ± 2,2; 7,6 ± 1,9 y 9,0 ± 3,9 para L1, L2 y L3 respectivamente. Las larvas que llegaron al estado de pupa no lograron superar esta etapa. Al adicionar huevo de Sitotroga cerealella Olivier (Lepidoptera: Gelechidae) a la dieta de L3, el desarrollo fue 7,9 ± 0,2; 7,4 ± 0,8; 6,5 ± 0,9 y 13,6 ± 0,9 días para L1, L2, L3 y pupa respectivamente. El adulto vivió en promedio 6,7 ± 4,9 d. La relación sexual fue rs = 0,42. De acuerdo con las condiciones en las que se realizó el experimento, se puede inferir que C. claveri no completa su desarrollo al alimentarse únicamente con R. indica y en consecuencia toma a este ácaro como presa ocasional.

Palabras clave: Depredador; Control biológico; Acaro rojo; Fitófago; Ciclo biológico

Introduction

The introduction of exotic species represents a threat to the biodiversity of ecosystems and a serious problem for agriculture 13,25.

The red palm mite, Raoiella indica Hirst 1924 (Acari: Tenuipalpidae) is an exotic pest native to India 30. In the American continent, it was first detected in 2004 in the Caribbean, in the Island of Martinique 9. Since then, it spread throughout most of the islands of the region 9,24. In 2008, R. indica appeared in Venezuela 36 and Florida, USA, 23; in 2009 it was recorded in Mexico 17.

The coconut palm (Cocos nucifera L.) is the main host of R. indica, although its host list has almost 70 species 6, R. indica causes damage to coconut palms by inserting its chelicerae through stomatal openings in order to feed on the cellular content of the mesophyll 19. The greatest damage has been observed during the nursery phase, even leading to the death of plants. In adult plants, the damages are more evident in mature leaves, which turn yellowish and can dry up completely, reducing the plant’s photosynthetic rate and causing flower abortion, which affects the coconut yield 24,29.

The control of R. indica has been carried out mainly through the use of chemical products, but given the height of some of its hosts and its presence in areas where this type of control is problematic, such as tourist and residential areas, the use of natural enemies can be considered a promising alternative 5,11,12.

Chrysopidae species are excellent predators that feed on a wide variety of phytophagous insects and mites that are found on plant leaves 1,10,34. Peña et al. (2009) reported species of Chrysopidae feeding on R. indica in Trinidad and Tobago, Puerto Rico and Florida, United States. Carrillo et al. (2011) identified two species of Chrysopidae, including Ceraeochrysa claveri (Navás, 1911) (Neuroptera: Chrysopidae), that fed on R. indica. Contreras-Bermúndez et al. (2017) also reported five species of Chrysopidae, including C. claveri, that naturally fed on R. indica in the area of Tecomán, Colima, Mexico.

Ceraeochrysa claveri is an important predator of phytophagous pests in many Neotropical agroecosystems and because of a broad prey range, high voracity, high search capacity and short developmental time, C. claveri can be considered an efficient biological control agent 1.

Based on the information presented above and given the little information available on the biology and predatory activity of Chrysopidae on phytophagous mites, the present study aimed to study the predatory capacity, larval development and longevity of adults of C. claveri when having R. indica as its main prey. The information obtained would be useful for the integrated management of this pest.

Materials and methods

A C. claveri colony was established using the method developed by the Entomophagous Insects Department of the Centro Nacional de Referencia de Control Biológico (IE-CNRCB) 22. The insects were collected in a commercial coconut palm crop located on the malecon of Real-Pascuales, Municipality of Tecomán, Colima, Mexico (18°50’56.43’’ N; 103°57’15.08’’ W). The mites were collected in a commercial coconut palm crop located in the Amela Lagoon, of the same municipality (18°49’39.60’’ N; 103°47’08.83’’ W).

Prior to the study, C. claveri was identified using the keys of Tauber et al. (2000). The identity of R. indica was confirmed by molecular analysis (genomic DNA extraction using the HotSHOT method) at the Molecular Biology Laboratory (MBL) of the CNRCB 32,35. The specimens were deposited in the Entomophagous Insect Collection (CIE) of the CNRCB.

The evaluations were performed on the F0 generation of C. claveri in a laboratory of the IE-CNRCB located in the city of Tecomán, Colima, Mexico (18°55’37.62’’ N and 103°53’ 01.45’’ W; 45 m a. s. l.) under the following conditions: 25 ± 2°C, 60-70% RH and 14:10 h LD.

Predation capacity

The predation capacity of C. claveri was evaluated using the sand paper method, which consisted of a Petri dish (5 cm in diameter) with a disk of sterile wet filter paper at the bottom, covered by a disk of banana leaf (5 cm in diameter), on top of which were placed 50 individuals of R. indica. An hour later, a predator was introduced to each experimental arena. Before starting the experiment, the larvae were fasted for 12 h. The first larval instar was used 24 h after emerging from the egg; the second and third instars were used 24 h after the immediately previous instar change. The number of individuals consumed in a period of 5 h was determined. The individuals consumed by the predator were not replaced during the experiment. Ten repetitions were performed in a breeding chamber under the environmental conditions mentioned above.

The number of individuals consumed by each instar was analysed by ANOVA. When significant differences were observed, a Tukey’s multiple comparison test (α = 0.05) was applied 28.

Larval development

Two larval development assays were conducted. The first consisted of a cohort of 129 larvae with 24 h of having emerged, which were placed individually in Petri dishes whose bottom was covered with a 5-cm-diameter banana leaf. The first and second instars were fed with 50 individuals of R. indica; the third with 100. The second assay consisted of a cohort of 90 larvae with 24 h of having emerged, which were fed using the method described above. To evaluate the effect of diet on larval development, 100 eggs of Sitotroga cerealella (Oliver, 1789) (Lepidoptera: Gelechiidae) were added to larva 3 in the second trial. Every 24 h observations were made and the food was changed until the pupae were obtained. The presence of larval exuviae was taken into account to estimate the duration of each biological stage in days; survival was also recorded. The pupa was defined by the presence of the cocoon and culminated in the emergence of the adult.

The emerging adults were individually transferred to Styrofoam cups of 8 cm in diameter and 6 cm in height to determine their longevity. To facilitate aeration and to prevent insects from escaping, a 4-cm-diameter opening was made in the lid and covered with organza cloth. A 1.5-cm-diameter opening was made on the lower side of the cup; it was plugged with cotton and moistened daily to supply water to the adult. To feed the adults, a piece of 1.5 X 2 cm bond paper impregnated in the artificial diet (honey, brewer’s yeast, pollen, ascorbic acid and spirulina) was placed inside the cup every third day 22.

The data were recorded per day and the survival and development time of the biological stages were evaluated. It allowed to determine the mortality rate (qx = Death rate [dx/lx]) and life expectancy (ex = Life expectancy [Tx/lx]), where lx = proportion of survivors at the beginning of each stage (Nx/N0), dx = number of deaths between stages lx and lx + 1, and Tx = Time left to live until extinction (inverse summation lx). The sex ratio was determined by the formula rs = number of females/number of females + number of males 31.

Results and discussion

Predation capacity: the statistical analysis showed a significant (α = 0.05) difference between instars (F value = 32.99; P < 0.0001) indicating a greater consumption by third instar larvae (Table 1).

Table 1: Tabla 1: Average consumption of Raoiella indica by the F0 generation of Ceraeochrysa claveri after 5 h of evaluation (25 ± 2°C, 60-70% RH, 14:10 LD). Consumo promedio de la generación F0 de Ceraeochrysa claveri alimentada con Raoiella indica a las 5 h de evaluación (25 ± 2°C, 60 - 70 % HR, 14:10 LO). 

* Means with the same letter are statistically the same.

* Medias con la misma letra estadísticamente son iguales.

Although species of the family Chrysopidae have been reported feeding on mites, we found no previous study on predation capacity against mites. For this reason, the data obtained in the present study was compared with other species and other preys. The greatest voracity was recorded in the third instar larvae (larva 3). Guarín (2003) and Velásquez (2004) mentioned that the third larval instar of Chrysopidae species shows a voracious appetite, as well as a high degree of cannibalism. In agreement with it, Ferreira-Almeida et al. (2009) reported that third instar larvae of C. claveri consumed 80% of preys when fed with Plutella xylostella (L.) (Lepidoptera: Plutellidae). Similarly, when evaluating Ceraeochrysa cincta (Schneider) and C. valida Banks (Neuroptera: Chrysopidae) fed with Diaphorina citri Kuwayama (Hemiptera: Liividae), Pacheco-Rueda et al. (2015) and Palomares-Pérez et al. (2016) concluded that third instar larvae are the most voracious. Probably, the greater voracity of third instar larvae is a behaviour associated with the larger size of these larvae 26 and the need to accumulate and store molecules, such as lipids, proteins and carbohydrates, which will be used for keeping the insect alive during the diapause and for nutrition afterwards.

Larval development. Table 2 (page 229), shows the data on larval development.

Table 2: Tabla 2: Larval development in days of the F0 generation of Ceraeochrysa claveri fed with Raoiella indica and with eggs of Sitotroga cerealella at 25 ± 2°C, 60-70% RH and 14:10 h LD. Desarrollo larval en días de la generación F0 de Ceraeochrysa claveri alimentado con Raoiella indica y con huevo de Sitotroga cerealella a 25 ± 2°C, 60-70% HR y 14:10 h. LO. 

n = Individuals evaluated; SD = Standard deviation; qx= Mortality rate; ex = Life expectancy.

n=Individuos evaluados; SD=Desviación estándar; qx =Tasa de mortalidad; ex = Esperanza de vida.

It shows that all individuals in the third instar died when feeding only on R. indica (Table 2a, page 229). When eggs of S. cerealella were added to the diet of third instar larvae of C. claveri they were able to surpass the larval and pupal stages and reach adulthood in 35.4 ± 2.8 d, with a survival rate of 13.3% (Table 2b, page 229).

Table 2 (page 229) shows that the duration of the first instar (Larva 1) is similar to that of the second instar (Larva 2), unlike the third instar (Larva 3), which lasts longer but is shortened when S. cerealella eggs are added to the diet (Table 2b, page 229). This may be due to the nutritional quality provided by S. cerealella eggs compared to R. indica. Soffiantini-Lira and De Luna-Batista (2006) mentioned that a shorter life cycle is a consequence of good nutrition.

Ferreira-Almeida et al. (2009) reported shorter periods for the three larval instars of C. claveri when fed with different preys; they concluded that this was due to good nutrition. Santa-Cecília et al. (1997) evaluated the performance of Ceraeochrysa cubana (Hagen) (Neuroptera: Chrysopidae) with different preys and found that the quality of food ingested by larvae affected their biological development.

The mortality rate was high in larva 2, and in larva 3, total death occurred when the three larval instars were fed only with R. indica. Possibly the size and number of prey offered did not provide the necessary amounts of nutrients to allow the full development of the larvae, the good formation of the pupae and as a result, give rise to adults. When adding S. cerealella eggs to the diet of the larva 3, 12 individuals of 90 reached the adult state, living on average 6.7 ± 4.9 d (Table 2b), this time was not sufficient to exceed the period of pre-oviposition (10.6 ± 0.51 days) 8 as a consequence, there was no offspring. The data suggest that C. claveri can take R. indica as an secundary prey since feeding on this mite alone it could not complete its cycle, unlike the results obtained by Carrillo et al. (2011), where they found that C. claveri complete its cycle, although adults don’t get to reproduce.

The results obtained in the present study indicate that increasing the quality of food in the diet of the third instar larvae provides sufficient nutrients to complete the larval and pupal stage, but requires better feeding, possibly during the first two instars, for the adult to develop fully.

Although the sex ratio (rs = 0.42) indicates a greater number of males, it is close to the 50/50 ratio reported by Núñez (1988). However, a biased sex ratio to males may favor fertility by increasing the possibility of female encounters with virgin males, which would result in increased egg production 16.

The type of feeding during the larval period is crucial for preimaginal development and can affect the time of development, survival, fertility and longevity in the adult stage 3,15. Santa-Cecília et al. (1997), Auad et al. (2001) and Ferreira-Almeida et al. (2009) mentioned that the quality of the food ingested by larvae of C. cincta, C. cubana and C. claveri can interfere with the development and survival of adults.

Conclusions

According to the information obtained, C. claveri is unable to complete its larval development using R. indica as the only prey and therefore, this mite can be considered as a secondary prey.

Its high voracity, especially in the third stage, demonstrates its potential to be included in a biological control program for R. indica.

References

1. Albuquerque, G. S.; Tauber, C. A.; Tauber, M. J. 2001. Chrysoperla externa and Ceraeochrysa spp.: potential for biological control in the New World tropics and subtropics. p. 408-423. In: P. K. McEwen; T.R. New & A.E. Whittington (Eds). Lacewings in the crop environment. Cambridge University Press. XVIII: 546 p. [ Links ]

2. Auad, A. M.; Toscano, L. C.; Boiça, A. I. Jr.; de Freita, S. 2001. Aspectos biológicos dos estádios imaturos de Chrysoperla externa (Hagen) e Ceraeochrysa cincta (Schneider) (Neuroptera: Chrysopidae) alimentados com ovos e Ninfas de Bemisia tabaci (Gennadius) biótipo B (Hemiptera: Aleyrodidae). Neotropical Entomology. 30(3): 429-432. doi.org/10.1590/ S1519-566X2001000300015. [ Links ]

3. Canard, M.; Principi, M. M. 1984. Life histories and behavior. p. 57-100. In: Canard, M.; Y. Semeria & T. R. New (Eds.). Biology of Chrysopidae. Series Entomologica Vol. 27. [ Links ]

4. Carrillo, D.; Howard, J. F.; Verle-Rodrigues, J.; Peña, J. E. 2011. A review of the natural enemies of the red palm mite, Raoiella indica (Acari: Tenuipalpidae). Experimental and Applied Acarology. 57(3-4): 347-60. Doi.org/10.1007/s10493-011-9499-4. [ Links ]

5. Carrillo, D.; Hoy, M. A.; Peña, J. E. 2014. Effect of Amblyseius largoensis (Acari: Phytoseiidae) on Raoiella indica (Acari: Tenuipalpidae) by predator exclusion and predator release techniques. Florida Entomologist. 97(1): 256-261. doi.org/10.1653/024.097.0134. [ Links ]

6. Cocco, A.; Hoy, M. A. 2009. Feeding, reproduction, and development of the red palm mite (Acari: Tenuipalpidae) on selected palms and banana cultivars in quarantine. Florida Entomologist . 92(2): 276-291. doi.org/10.1653/024.092.0212. [ Links ]

7. Contreras-Bermúdez, Y.; Palomares-Pérez, M.; Gallo, A.; Suaste-Dzul, A. P.; Sarmiento-Cordero, M. A.; Sánchez-González, J. A.; Arredondo-Bernal, H. C. 2017. Chrysopids (Neuroptera: Chrysopidae) Associated with Raoiella indica (Acari: Tenuipalpidae) in Colima, Mexico. Journal of Entomological Science. 52(4): 460-462. doi.org/10.18474/JES17-62.1. [ Links ]

8. Ferreira-Almeida M.; Barros, R.; Corrêa-Goudim, M. G. Jr.; De Freitas, S.; Bezerra, A. L. 2009. Biología de Ceraeochrysa claveri (Navás) (Neuroptera: Chrysopidae) predando Plutella xylostella (L.) (Lepidoptera: Plutellidae). Ciêcia Rural, Santa Maria. 39(2): 313-318. doi.org/10.1590/ S0103-84782009000200001. [ Links ]

9. Fletchmann, C. H. W.; Etienne, J. 2004. The red palm mite, Raoiella indica Hirst, a threat to palms in the Americas (Acari: Prostigmata: Tenuipalpidae). Systematic and Applied Acarology. 9:109-110. doi.org/10.11158/saa.9.1.16. [ Links ]

10. Freitas, S.; Penny, N. D. 2001. The green lacewings (Neuroptera: Chrysopidae) of Brazilian agroecosystems. Proceedings of the California Academy of Sciences. 52(19): 245-395. [ Links ]

11. Fruitos, A.; Portela, J. A.; Del Barrio, L.; Mazzitelli, M. E.; Marcucci, B.; Giusti, R.; Alemanno, V.; Chaar, J.; López García, G.; González Luna, M.; Aquindo, N.; Debandi, G. 2019. Modelos de manejo del espacio interfilar en viñedos: percepciones acerca de su valor como proveedores de servicios ecosistémicos. Revista de la Facultad de Ciencias Agrarias. Universidad Nacional de Cuyo. Mendoza. Argentina. 51(1): 261-272. [ Links ]

12. Funes, C. F.; Escobar, L. I.; Palavecino, B. E.; Kirschbaum, D. S. 2020. First record of Feltiella curtistylus Gagné (Diptera: Cecidomyiidae) in Argentina. Revista de la Facultad de Ciencias Agrarias . Universidad Nacional de Cuyo. Mendoza. Argentina. 52(1): 314-319. [ Links ]

13. Glowka, L.; Burhenne-Guilmin, F.; Synge, H.; McNeely, J. A.; Gündling, L. 1996. Guía del Convenio sobre la Diversidad Biológica. UICN, Gland, Suiza y Cambridge, Reino Unido. 179 p. [ Links ]

14. Guarín, J. H. 2003. Thrips palmi Karny en el oriente antioqueño. Biología, efecto de hongos entomopatógenos y de extractos vegetales, comportamiento de sus enemigos naturales en campo e impacto ambiental para su manejo sostenible. Rionegro, Antioquia (Colombia). Editorial: Gráficas Madrigal. p 4-13. [ Links ]

15. Khuhro, R.; Ghafoor, A.; Mahmood, A.; Khan, M. S.; Andleeb, S.; Bukhari, M.; Maqsood, I.; Shahjahan, M. M.; Baloch, N. A. 2012. Assessment of potential of predatory spiders in controlling the cotton jassid (Amrasca devastans) under laboratory conditions. Journal of Animal and Plant Sciences 22: 635-638. [ Links ]

16. Medina-Pereyra, P.; Ordano, M.; Reguilón, C.; Salvatore, A. R.; Acosta, C.; Risso, L. 2016. El papel de la densidad y la proporción sexual de adultos en la fecundidad de Diatraea saccharalis (Lepidoptera: Crambidae) en jaulas de cría masiva. Revista de la Sociedad Entomológica Argentina. 75(3-4): 165-171. [ Links ]

17. NAPPO (North American Plant Protection Organization). 2009. Detecciones del ácaro rojo de la palma (Raoiella indica) en Cancún e Isla Mujeres, Quintana Roo, México. Notificación oficial de Plaga. Publicada. 20-11-2009. [ Links ]

18. Núñez, Z. E. 1988. Ciclo biológico y crianza de Chrysoperla externa y Ceraeochrysa cincta (Neuroptera: Chrysopidae). Revista Peruana de Entomología. 31: 76-82. [ Links ]

19. Ochoa, R.; Beard, J. J.; Bauchan, G. R.; Kane, E. C.; Dowling, A. P. G.; Erbe, E. F. 2011. Herbivore exploits chink in armor of host. American Entomologist. 57(1): 26-29. doi.rog/10.1093/ ae/57.1.26. [ Links ]

20. Pacheco-Rueda, I.; Lomelí-Flores, J. R.; López-Arroyo, J. I.; González-Hernández, H.; Romero-Nápoles, J.; Santillán-Galicia, Ma. T.; Súarez-Espinoza, J. 2015. Preferencia de tamaño de presa en seis especies de Chrysopidae (Neuroptera) sobre Diaphorina citri (Hemiptera: Liviidae). Revista Colombiana de Entomología. 41(2): 187-193. [ Links ]

21. Palomares-Pérez, M.; Ayala-Zermeño, M. A.; Rodríguez-Vélez, B.; De la Cruz-Llanas, J. J.; Sánchez González, J. A.; Arredondo-Bernal, H. C.; Córdoba-Urtiz, E. G. 2016. Abundancia y depredación de Ceraeochrysa valida (Neuroptera: Chrysopidae) sobre Diaphorina citri (Hemiptera: Liviidae) en Colima, México. Chilean Journal of Agricultural & Animal Science (ex Agro-Ciencia). 32(3): 234-243. doi.org/10.4067/S0719-38902016005000008. [ Links ]

22. Palomares-Pérez, M.; Barajas-Romero, M. I.; Arredondo-Bernal, H. C. 2017. Mass production of Ceraeochrysa valida (Banks) (Neuroptera: Chrysopidae) at 30°C. Chilean Journal of Agricultural & Animal Science (ex Agro-Ciencia) . 33(2): 187-191. Doi: 10.4067/s0719- 38902017005000504. [ Links ]

23. Peña J. E.; Rodrigues, J. C. V.; Roda, A.; Carrillo, D.; Osborne, L. S. 2009. Predator-prey dynamics and strategies for control of the red palm mite (Raoiella indica) (Acari: Tenuipalpidae) in areas of invasion in the Neotropics. Proceedings of the 2nd meeting of IOBC/ WPRS, work group integrated control of plant feeding mites. Florence, Italy. p. 69-79. [ Links ]

24. Rodrigues, J. C. V.; Ochoa, R.; Kane, E. C. 2007. First report of Raoiella indica Hirst (Acari: Tenuipalpidae) and its damage to coconut palms in Puerto Rico and Culebra Island. International Journal of Acarology. 33(1): 3-5. [ Links ]

25. Rojas Rodriguez, J.; Rossetti, M. R.; Videla, M. 2019. Importancia de las flores en bordes de vegetación espontánea para la comunidad de insectos en huertas agroecológicas de Córdoba, Argentina. Revista de la Facultad de Ciencias Agrarias . Universidad Nacional de Cuyo. Mendoza. Argentina. 51(1): 249-259. [ Links ]

26. Salamanca-Bastidas, J.; Varón-Devia, E. H.; Santos-Amaya, O. 2010. Cría y evaluación de la capacidad de depredación de Chrysoperla externa sobre Neohydatothrips signifer, trips plaga del cultivo de maracuyá. Corpoica Ciencia y Tecnología Agropecuaria. 11(1): 31-40. [ Links ]

27. Santa-Cecília, L. V. C.; Souza, B.; Carvalho, C. F. 1997. Influência de diferentes dietas em fases imaturas de Ceraeochrysa cubana (Hagen) (Neuroptera: Chrysopidae). Anais da Sociedade Entomológica do Brasil. 26(2): 309-314. [ Links ]

28. SAS Institute. 2008. SAS Users Guide: Statistics version 9.02 for Windows. SAS Institute Inc., Cary. North Carolina. [ Links ]

29. Sathiamma, B. 1996. Observations on the mite fauna associated with the coconut palm in Kerala, India. Journal of Plantation Crops. 24(2): 92-96. [ Links ]

30. SENASICA Laboratorio Nacional de Referencia Epidemiológica Fitosanitaria LANREF-CP. 2014. Ficha Técnica N° 14. Ácaro rojo de las palmas Raoiella indica Hirts. http://www.cesaveson.com/files/f115c4bbda1d18176a19b6e3b3d4d112.pdfLinks ]

31. Silveira-Neto, S.; Nakano, O.; Barbin, D.; Villa-Nova, N. A. 1976. Manual de ecologia dos insetos. São Paulo: Agronômica Ceres. 419 p. [ Links ]

32. Soffiantini-Lira, R.; De Luna-Batista, J. 2006. Aspectos biológicos de Chrysoperla externa alimentados com pulgões da erva-doce. Revista de Biologia e Ciências da Terra. 6(2):20-35. [ Links ]

33. Tauber, C. A.; De León, T.; Penny, N. D.; Tauber, M. J.2000. The genus Ceraeochrysa (Neuroptera: Chrysopidae) of America North of Mexico: Larvae, Adults, and Comparative Biology. Annals of the Entomological Society of America. 93(6):1195-1221. Doi: 10.1603/0013-8746(2000)093[1195:TGCNCO]2.0.CO;2. [ Links ]

34. Tauber, C. A.; De León, T. 2001. Systematics of green lacewings (Neuroptera: Chrysopidae): larvae of Ceraeochrysa from Mexico. Annals of the Entomological Society of America. 94(2): 197-209. Doi: 10.1603/0013-8746(2001)094[0197:SOGLNC]2.0CO;2. [ Links ]

35. Truett, G. E.; Heeger, P.; Mynatt, R. L.; Truett, A. A.; Walker, J. A.; Warman, M. L. 2000. Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques. 29(1): 52-54. Doi: 10.2144/00291bm09. [ Links ]

36. Vasquez, C.; Quirós, M.; Aponte, O.; Sandoval, M. F. 2008. First Report of Raoiella indica Hirst (Acari: Tenuipalpidae) in South America. Neotropical Entomology. 37(6): 739-740. [ Links ]

37. Velásquez, L. 2004. Estudio de la biología de Ceraeochrysa claveri (Neuroptera: Chrysopidae) alimentada con dos tipos de presas en condiciones de laboratorio. En: Salamanca Bastidas, J.; Varón-Devia, E. H.; Santos-Amaya, O. 2010. Cría y evaluación de la capacidad de depredación de Chrysoperla externa sobre Neohydatothrips signifer, trips plaga del cultivo de maracuyá. Corpoica Ciencia y Tecnología Agropecuaria. 11(1): 31-40. [ Links ]

italic: ; Received: September 28, 2019; italic: ; Accepted: September 17, 2021

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License