SciELO - Scientific Electronic Library Online

 
 número117Políticas del agua y de restauración de los humedales en lagunas de Guanacache: aproximaciones a un diálogo transdisciplinarioLos problemas ambientales en un destino turístico. El caso de Villa Pehuenia-Moquehue, provincia de Neuquén, Argentina índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

  • Não possue artigos citadosCitado por SciELO

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Boletín de estudios geográficos

versão On-line ISSN 2525-1813

Bol. estud. geogr.  no.117 Mendoza jun. 2022  Epub 27-Jun-2023

http://dx.doi.org/10.48162/rev.40.013 

Investigaciones

Using water rights to identify groundwater density areas in the Sonora River basin

Uso de derechos de agua para identificar áreas de densidad de agua subterránea en la cuenca del río Sonora

Rolando Enrique Díaz Caravantes1 
http://orcid.org/0000-0002-4117-2197

Nicolás PinedaPablos2 
http://orcid.org/0000-0003-0897-2667

Maribel PallanezMurrieta3 
http://orcid.org/0000-0002-1888-6319

1Colegio de Sonora. México. rdiaz@colson.edu.mx

2Colegio de Sonora. México. npineda@colson.edu.mx

3Universidad Estatal de Sonora. México. maribel.pallanez@ues.mx

Abstract

Justification: Although there is general information on the aquifers water balance, it is relevant to have methods to specify which are the most overexploited areas and for which kind of water use.

Objective: This study identifies the areas with the highest density of groundwater use in the aquifers of the Sonora River basin.

Methodology: The analysis is based on georeferencing 5,342 groundwater right titles, which are converted into areas using the Kernel density method.

Results: Seven areas of high-medium density and 10 of medium density are identified. The volume of water and its main uses are estimated for each area.

Limitations: Data time period correspond to June 2014.

Value: The data time period may be an advantage for subsequent studies, since it provides information on the baseline state prior to the August 2014 mining spill.

Conclusions: The method employed allows the identification of water stress areas and might help prevent the overexploitation of aquifers with high level of extraction.

Keywords: Kernel density; aquifer overexploitation; groundwater; water rights; water pressure; Sonora river

Resumen

Justificación: Si bien existe información general sobre el balance hídrico de los acuíferos, es importante contar con métodos para especificar cuáles son las áreas más sobreexplotadas y por cuál tipo de uso del agua.

Objetivo: En este estudio se identifican las áreas de mayor densidad de uso de agua subterránea en los acuíferos de la cuenca del río Sonora.

Metodología: El análisis se basó en la georreferenciación de 5,342 derechos de agua subterránea, los cuales fueron convertidos a áreas con el método de densidad de Kernel.

Resultados: Se identificaron siete áreas de densidad alta-media y 10 de densidad media. De cada área se determinó el volumen de agua y su uso principal.

Limitaciones: Se utilizaron datos de junio 2014.

Valor: La limitación puede ser a una ventaja para estudios posteriores, pues aporta información sobre el estado basal previo a la contingencia del derrame de origen minero de agosto de 2014.

Conclusiones: El método empleado apoya la identificación exacta de áreas con presión sobre los recursos hídricos y puede ayudar a prevenir la sobreexplotación de acuíferos que cuentan con alta extracción.

Palabras clave: densidad de Kernel; sobreexplotación de acuíferos; derechos de agua; presión hídrica; río Sonora

Introducción

In many regions of the world, aquifers represent the largest source of water storage, often with orders of magnitude and more storage capacity than surface water storage. As is known, the largest portion of fresh water (68.7%) is concentrated in the form of ice in glaciers and mountainous regions; 29.9% is stored in aquifers; and only 0.26% is found in lakes, reservoirs, and rivers (Shiklomanov, 1998). According to Famiglietti (2014), groundwater currently represents up to 33% of total water withdrawals worldwide. Additionally, more than two billion people depend on groundwater as their main source of water, while half or more of the irrigation water used to grow the world's food comes from underground sources (Famiglietti, 2014).

In Mexico, in 2018, around 39.1% of the total volume of water rights granted for consumption came from groundwater; in addition, the main use of water, agriculture, has a granted volume of around 66 799 hm3 per year, of which 36.4% is extracted from groundwater; besides, at the national level, of the 12 628 hm3 a year granted for urban and domestic public use, 58.4% comes from groundwater (CONAGUA, 2018).

Groundwater is better protected against seasonal and climatic variability over the years and has less immediate vulnerability than surface water (Green et al., 2011). However, climate change and the growing demand for water will exert even more pressure on already highly exploited groundwater resources, in some areas, due to the growing water demand for irrigation (UNESCO and ONU-Agua, 2020, p. 23). Globally, the rate of groundwater depletion doubled between 1960 and 2000 (PBL Netherlands Environmental Assessment Agency, 2014).

According to the National Water Commission (CONAGUA), in Mexico, the demand for groundwater is also growing: the agricultural use of groundwater increased by 23.2% from 2001 to 2009 and the urban and domestic public uses of groundwater grew by 30.3%; over half of the extracted groundwater comes from overexploited aquifers (CONAGUA, 2011). Of the 653 aquifers in Mexico, 32 were overexploited in 1975; however, since 2001, the number of overexploited aquifers has oscillated annually between 100 and 106. At the end of 2017, 105 overexploited aquifers were reported (CONAGUA, 2018).

One of the most obvious environmental effects of aquifer overexploitation is salinization. In this regard, one of the effects of climate change is the rise in sea levels which at its time would increase the salinity of coastal aquifers, where groundwater recharge is also expected to decrease. This will cause an increased risk of water-borne diseases and an increase in non-communicable diseases due to high salt intake (UNESCO and ONU-Agua, 2020, p. 98).

In Mexico, by the end of 2017, 32 aquifers had been identified with the presence of saline soils and brackish water, located mainly in the north and center of Mexico; in addition, there was saltwater intrusion in 18 coastal aquifers nationwide (CONAGUA, 2018).

The Sonora River had an additional source of contamination on August 6, 2014 when 40,000 cubic meters of acidified copper sulphate (CuSO4) were spilled into the river by a mining company, Buenavista del Cobre, located in Cananea. Reports from federal agencies indicate that the spill was caused by the failure to tie a polyethylene tube in one of the pools of leachate and the lack of a valve in the sink excesses; some of the contaminants found are: copper, arsenic, aluminum, cadmium, chromium, iron, manganese and plumbum (SEMARNAT, 2014). According to groundwater monitoring carried out by the Mexican government, most of the wells in the area register the presence of metals outside the water quality standard (Díaz-Caravantes et al., 2021).

Despite the importance of overextraction, due to the large scale of the aquifer it is not possible to identify the specific areas in which it is being over- exploited. This prevents the adoption of measures to control over-demand. Experts argue that the study of intensive groundwater use provides a better understanding of sustainability than the extraction-recharge equation (Llamas & Custodio, 2002; Scott et al., 2010). This perspective states that the extraction of groundwater might be a better approximation to identify the impacts on the water resource. This approach is even more pertinent if we take into consideration that in Mexico the use of groundwater replaces the use of surface water, particularly on arid lands (Scott et al., 2010). The analysis of groundwater extraction also allows us to gain a better understanding of the pressure being exerted on surface waters.

Following these insights, in this study we propose a method based on the analysis of water rights information to identify the areas with the most intensive groundwater use. As an example, we use water rights information of the Sonora River basin of 2014, a database provided by CONAGUA (2014). The methodology analyzed the quantitative data using the Kernel density method. The results present the areas with the highest density of overextraction, as well as the volumes and main uses of water. At the end, we discuss the advantages of this analysis.

Study area

As shown in Figure 1, the Sonora River basin is in Northeast-Central Sonora, Mexico, with a total area of 30,913 square kilometers. The mean annual precipitation of the basin is 376 millimeters (Romo et al., 2014). The Sonora River descends from the Los Ajos, Cananea and Bacanuchi mountain ranges flows southwest along 294 kilometers towards the Rodolfo Félix Valdés Dam (aka El Molinito) with a storage capacity of 150 hm3 (cubic hectometers1) at the ordinary average water level (known as NAMO according to its Spanish acronym), and 23 kilometers further down, towards the Abelardo L. Rodríguez Dam, adjacent to the city of Hermosillo, with a NAMO storage capacity of 219.5 hm3 (Pallanez, 2002; Romo León et al., 2014). According to hydrometric information, the Sonora River has been turned from a perennial flow in the years 1960-1995 into an ephemeral regime from 1995 to 2015 (CONAGUA, 2013). In these two periods, annual runoff decreased from an average of 134 hm3 in the 1960-1995 period to 34 hm3 in the years 1995- 2015. The hydrology of the region is determined by a dry and semi-dry climate present in most of the state with little rainfall, as well as by a layer of vegetation that allows the infiltration of water to the subsoil (Pallanez, 2002).

Source: Own elaboration

Figure 1 Location of the Sonora River Basin in Mexico/ Figura 1. Ubicación de la cuenca del Río Sonora en México 

The water users of the Sonora River basin extract their water mainly from aquifers. As can be seen in table 1, more than 1,000 hm3 granted water, almost 80%, was groundwater (Table 1).

Table 1 Water rights by type of source and use / Tabla 1. Derechos de agua según tipo de fuente y uso 

Source: CONAGUA (2014)

Due to this intensive use of groundwater, it is critical to know the status of the aquifers in the basin. Their water balance, according to the information of June of 2014 from the National Water Commission (CONAGUA, 2015) is shown in Figure 2.

Source: CONAGUA (2015)

Figure 2 Aquifer Water Balance on the Sonora River Basin in 2014/ Figura 2. Balance hídrico de los acuíferos en la Cuenca del Río Sonora en 2014 

As it can be seen in Figure 2, there is a balance deficit in the Costa de Hermosillo, Mesa del Seri-La Victoria, Río Zanjón, Sahuaral and Río Bacoachi aquifers; in these aquifers, the recharge is less than the extraction and natural discharge. In the rest of the aquifers, the water balance is positive, as is shown in table 2.

Table 2 Water balance of the aquifers in the Sonora River basin /Tabla 2. Balance hídrico de los acuíferos en la Cuenca del Río Sonora 

Source: CONAGUA (2015)

As shown in Table 2, aquifers named Río Bacanuchi, La Poza, Santa Rosalía, Río Sonora and Río San Miguel have a positive water balance, which CONAGUA placed as availability. Of all the aquifers, the most overexploited are La Costa de Hermosillo and Mesa del Seri-La Victoria. The first case of overexploitation is due to the extraction to irrigate a district of 66,296 ha, La Costa de Hermosillo, a large-scale commercial agricultural district that produces grapes, oranges, nuts and vegetables for export to the U.S. (Díaz- Caravantes and Wilder, 2014). The second case is due to the extraction to supply water to the city of Hermosillo, the capital of Sonora, with 936,263 inhabitants in 2020 (INEGI, 2021), and which has a water grant to draw about 50 hm3 of groundwater per year (CONAGUA, 2014).

Methods

In Mexico, since the approval of the National Water Law (LAN) in 1992, the Public Registry of Water Rights (REPDA) carries out the registration and approval of water rights. Although the LAN was enacted in 1992, it was not until 2006 that the REPDA became a reliable database when the water rights registration process was completed (Pineda et al., 2014; Scott et al., 2010).

The REPDA contains basic information to understand the use of groundwater in Mexico. Each water right register indicates the granted volume, its geographic location, the use water is authorized for and the drilling depth, among other data. This data provides an idea of the pressure exerted on the aquifers in the different regions of the country.

The database for this study comprises the 5,342 water rights from groundwater uses of the Sonora River Basin updated to June 2014 according to REPDA. The database was provided by personnel of the CONAGUA (2014) through a portable storage device at the request of the researchers. The database file had the Excel XP® program extension (xlsx). The data included the longitude and latitude of each water right which, using ArcMap®, we located the point record of each right.

The production of the spatial model was carried out using the Kernel density calculation method (Baxter and Beardah, 1997), which consists of converting points, in this case the water rights, to continuous surfaces based on the attribute of annual volume of water granted for each right. This transformation allowed us to visualize the areas according to high, medium or low level of density.

For the computation of the surfaces, the Kernel method calculates the density of observations around a pixel. ArcGIS® uses a Kernel-type quadratic function (Silverman, 1986, p. 76), as shown below (figure 3):

Figure 3 

Where τ is the radius of the circle of neighboring points, hi is the distance between point s and the observed point Si, n is the number of observed points and D(s) is the density at that point.

One of the advantages of using Kernel density maps is the possibility of considering the attributes of each point, such as in this case the annual volume of water granted by CONAGUA.

For our study, the calculation to identify the areas of higher density was carried out with a spatial resolution of pixels of 100 x 100 meters.

In the Kernel method, the selection of the search radius of neighboring points depends mainly on the needs of the problem to be studied (Cai et al., 2013; Zhang et al., 2012).

Spencer and Angeles, 2007). Another criterion is to identify the optimal radius based on the standard deviation of the resulting raster pixels at diverse radii. A high standard deviation shows areas with high density but little extension, while a low standard deviation shows the opposite. The most convenient standard deviation, and consequently the appropriate radius, might be considered when, at different radii, the difference between the standard deviations begins to be minimal, as shown in table 3.

Table 3 Standard deviation at different radii of selection of neighboring points / Tabla 3. Desviación estándar a diferentes radios de selección de puntos vecinos 

Source: Own elaboration.

In our study, we chose the radius of eight kilometers which is when the subtraction of the differences began to be less than 1%, that is, the standard deviation began to be very similar to the immediate previous one.

After this calculation, the density zones were classified, using the Jenks method, into three classes: high, medium and low. This classification method is recommended when there is no normal distribution of the data, as is the case in the variables used in this study. Under this method, the data are subdivided into several classes, with class limits that allow minimizing the variance within them and maximizing the variance between different classes (Espinosa et al., 2013).

Results and discussion

Figure 4 shows the conversion that the Kernel method allows to do from points representing water rights (a) into areas of density (b).

Source: Own research based on CONAGUA (2014)

Figure 4 Areas with the highest density use of groundwater/ Figura 4. Áreas con mayor densidad de uso de agua subterránea 

As can be seen in Figure 4, there are 17 areas with the largest use of groundwater is located. As shown in table 4, these 17 zones comprise 88.5% of the groundwater rights in the basin.

Table 4 Basic information of highest density areas of groundwater use/ Tabla 4. Información básica de áreas de mayor densidad de uso de agua subterránea 

Source: Own research based on CONAGUA (2014)

There are seven areas where overlap high and medium density areas (high- medium): Costa de Hermosillo I, Peri-urbana, Pesqueira, Sahural, Ures, Cananea I, Willard and Carbó. Of these areas, Peri-urbana and Willard correspond to larger public-urban use, and are designated primarily to supply water to the city of Hermosillo, capital of the state of Sonora (Díaz- Caravantes and Wilder, 2014); Cananea I is an industrial use to supply water to the mining sector; the other four areas are mainly agricultural use, in which Costa de Hermosillo I and Pesqueira correspond to large-scale commercial agriculture (Díaz-Caravantes and Wilder, 2014). The areas of medium density are mainly for agricultural use, except Cananea II, which, like Cananea I, provides water to the mining activity in that region, such as the to the mine Buenavista del Cobre, a subsidiary of Grupo México company.

Finally, Figure 5 shows the information on the delimitation of the aquifers of the Sonora River basin together with the areas with the highest density.

Source: Own research based on CONAGUA (2014)

Figura 5 Highest density areas and bounded aquifers / Figura 5. Áreas de mayor densidad y acuíferos delimitados 

As it can be seen in Figure 4, the areas with high-medium density of use overlap with the overexploited aquifers identified by CONAGUA in Figure 2: Costa de Hermosillo, Mesa del Seri-La Victoria, Río Zanjón, Sahuaral and Rio Bacoachi. Nonetheless, our analysis has two great advantages: 1) it outlines with more spatial precision the areas with the greatest intensive use of groundwater; and 2) it helps to prevent aquifers from being over-exploited in the future, such as the Willard area in the La Poza aquifer. Similarly, medium-density areas can help prevent the possible depletion of areas of the aquifer.

Another contribution of this analysis is that, since the information is of June 2014, it provides a baseline to observe how the aquifer overexploitation has evolved since the mine tailings spillover on the Sonora River occurred on August 6, 2014 (Díaz-Caravantes et al., 2021).

Conclusions

The water rights data from REPDA can be used as an input to generate a cartography of the pressure on groundwater in Mexico, especially if we need to identify more precisely the places where you are consumed the most water inside the basin. These data do not show up by themselves the state of the aquifers, but they constitute a necessary reference to understand their current condition and their likely evolution over time. Since it is possible to identify high and medium density areas that are not yet overexploited, this information might be used to prevent overexploitation in the future. It can also help to pinpoint where and who is putting pressure on overexploited aquifers.

From this perspective, the method developed in this work can be a powerful and useful tool as it outlines the areas in which public policy intervention is necessary to achieve the aquifers sustainability. Policies might include, for instance, diminishing the number of wells and water rights granted per unit of area, reducing the maximum allowable depth of the new water grants, or significatively diminishing the volume of extractions.

Bibliographic references

Baxter, M. J., & Beardah, C. C. (1997). Some archaeological applications of kernel density estimates. Journal of Archaeological Science, (24), 347-354. https://doi.org/10.1006/jasc.1996.0119 [ Links ]

Cai, X., Wu, Z., & Cheng, J. (2013). Using kernel density estimation to assess the spatial pattern of road density and its impact on landscape fragmentation. International Journal of Geographical Information Science, 27(2), 222-230. https://doi.org/10.1080/13658816.2012.663918 [ Links ]

CONAGUA. (2011). Estadísticas del agua en México 2011. Comisión Nacional del Agua. Recuperado de http://www.conagua.gob.mx/CONAGUA07/Publicaciones/Publicaciones/SGP-1-11-EAM2011.PDFLinks ]

CONAGUA. (2013). Programa Detallado de Acciones de Gestión Integral para la Restauración Ecológica del Río Sonora. Comisión Nacional del Agua. [ Links ]

CONAGUA. (2014). Registro Público de Derechos de Agua. Hermosillo, Sonora: Comisión Nacional del Agua. [ Links ]

CONAGUA. (2015). Actualización de la disponibilidad media anual de agua subterránea de acuíferos del Estado de Sonora. Comisión Nacional del Agua. Recuperado de https://www.conagua.gob.mxLinks ]

CONAGUA. (2018). Estadísticas del agua en México. Comisión Nacional del Agua. Recuperado de http://sina.conagua.gob.mx/publicaciones/EAM_2018.pdfLinks ]

Díaz-Caravantes, R. E., Durazo-Gálvez, F. M., Vázquez, J. L. M., Tagles, H. D., & Pablos, N. P. (2021). Las plantas potabilizadoras en el río Sonora: Una revisión de la recuperación del desastre. Región y sociedad, (33), e1416-e1416. (Sonora, Mexico). https://doi.org/10.22198/rys2021/33/1416 [ Links ]

Díaz-Caravantes, R. E., & Wilder, M. (2014). W., Cities and Peri-urban Communities: Geographies of Power in the Context of Drought in Northwest Mexico. Water Alternatives, 7(3), 499-517. [ Links ]

Espinosa, N., Monsalve, J., & Gómez, S. (2013). Análisis de la metodología de los Sistemas de Información Geográfica (SIG) en la cartografía de la guerra en Colombia. Tabula Rasa, (19), 315-353. https://doi.org/10.25058/20112742.166 [ Links ]

Famiglietti, J. S. (2014). The global groundwater crisis. Nature Climate Change, 4(11), 945-948. https://doi.org/10.1038/nclimate2425 [ Links ]

Green, T. R., Taniguchi, M., Kooi, H., Gurdak, J. J., Allen, D. M., Hiscock, K. M., Aureli, A. (2011). Beneath the surface of global change: Impacts of climate change on groundwater. Journal of Hydrology, 405(3), 532-560. https://doi.org/10.1016/j.jhydrol.2011.05.002 [ Links ]

INEGI (2021). Censo Población y Vivienda 2020. Instituto Nacional de Estadística y Geografía. [ Links ]

Llamas, M. R., & Custodio, E. (Eds.). (2002). Intensive Use of Groundwater: Challenges and Opportunities. Lisse ; Exton, PA: CRC Press. [ Links ]

Pallanez, M. (2002). Valoración económica de los servicios ambientales sustentados por la presa Abelardo Luján Rodríguez los casos del agua y la fauna, 1990-2000. Tesis de Maestría, El Colegio de Sonora. [ Links ]

PBL Netherlands Environmental Assessment Agency. (2014, septiembre 1). Towards a world of cities in 2050. Recuperado de PBL Netherlands Environmental Assessment Agency website: https://www.pbl.nl/ en/publications/towards-a-world-of-cities-in-2050-an-outlook-on-water-related-challengesLinks ]

Pineda Pablos, N., Moreno Váquez, J. L., Salazar Adams, A., & Lutz Ley, A. N. (2014). Derechos de agua y gestión por cuencas en México: El caso del río Sonora. Espiral, 21(61), 191-225. [ Links ]

Romo León, J. R., Castellanos Villegas, A., & Méndez Estrella, R. (2014). Programa de medidas preventivas y de mitigación de la sequía-Consejo de Cuenca Alto Noroeste. México D.F.: Comisión Nacional del Agua. Recuperado de https://www.pronacose.gob.mx/pronacose14/contenido/documentos/IMTA_CONAGUA%20cue nca%20Noroeste%20salida.pdfLinks ]

Scott, C. A., Dall’erba, S., & Díaz-Caravantes, R. E. (2010). Groundwater rights in mexican agriculture: Spatial distribution and demographic determinants. The Professional Geographer, 61(1), 1-15. [ Links ]

Shiklomanov, I. (1998). World water resources: Modern assessment and outlook for 21st century - ScienceOpen. Federal Service of Rusia for Hidrometorology & Environment Monitoring State, Hidrological Institute. Recuperado de https://www.scienceopen.com/document?vid=6ee377e9-3ae7-4826-9473- 55e12143477fLinks ]

Silverman, B.W. (1986). Density estimation for statistics and data analysis, Chapman and Hall, New York. [ Links ]

Spencer, J., & Angeles, G. (2007). Kernel density estimation as a technique for assessing availability of health services in Nicaragua. Health Services and Outcomes Research Methodology, 7(3), 145-157. https://doi.org/10.1007/s10742-007-0022-7 [ Links ]

UNESCO, & ONU-Agua. (2020). Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2020: Agua y Cambio Climático. París: United Nations Educational, Scientific and Cultural Organization. Recuperado de https://es.unesco.org/themes/water-security/wwap/wwdr/2020Links ]

Zhang, Z. M., Wang, X. Y., Zhang, Y., Nan, Z., & Shen, B. G. (2012). The Over Polluted Water Quality Assessment of Weihe River Based on Kernel Density Estimation. Procedia Environmental Sciences, (13), 1271-1282. https://doi.org/10.1016/j.proenv.2012.01.120 [ Links ]

Los autores

1 A cubic hectometer (hm3) equals one million cubic meters (m3) or to 810.71 acre feet.

Received: September 09, 2021; Accepted: December 06, 2022

Rolando Enrique Díaz Caravantes es Profesor-Investigador de El Colegio de Sonora, Doctor en Geografía por la Universidad de Arizona (2010). Es Maestro en Ciencias Sociales por El Colegio de Sonora (2001). Es miembro del Sistema Nacional de Investigadores también desde 2010. Ha estudiado la interacción humano- medio ambiente-agua centrándose en cómo los medios de vida de los pequeños agricultores se han visto afectados negativamente por las condiciones ambientales. Actualmente, su trabajo tiene como objetivo evaluar los determinantes del riesgo: peligro, exposición y vulnerabilidad en el caso de Sonora. Entre sus publicaciones como coautor más recientes se encuentran: “Las plantas potabilizadoras en el río Sonora: Una revisión de la recuperación del desastre”, Región y sociedad, 33, Hermosillo, El Colegio de Sonora, 33 (2021); “Urban Water Security: A Comparative Study of Cities in the Arid Americas”, Environment and Ur(1), banization, 32 Londres, SAGE journals, pp. 275-294 (2020); “Análisis de los criterios para proteger la vida acuática: El río Sonora después del derrame minero de 2014”, Aqua-LAC, 10 (1), Montevideo Uruguay, Programa Hidrológico Intergubernamental de la UNESCO, pp. 75-87 (2018).

Nicolás Pineda Pablos es Profesor-Investigador de El Colegio de Sonora, Doctor en Filosofía (Ph.D), con especialidad en Asuntos Públicos, por la Universidad de Texas en Austin (1999). Es Licenciado en Ciencias Políticas y Administración Pública por la Universidad Nacional Autónoma de México en donde se tituló con mención honorífica (1981). Es miembro del personal académico de El Colegio de Sonora desde 1990 y miembro del Sistema Nacional de Investigadores también desde 1990 donde desde 2010 fue promovido al nivel II. Sus áreas de interés académico han sido el análisis de políticas públicas, la gestión urbana del agua, los servicios urbanos y los gobiernos locales en América Latina. Sobre estos temas ha impartido cursos de licenciatura y posgrado en varias instituciones mexicanas y ha publicado diversos artículos académicos, libros y capítulos de libros. Ha realizado estancias académicas en la Universidad de Arizona y en la Universidad de California San Diego. Ha sido columnista del periódico El Imparcial de Hermosillo, Sonora desde 1985. Ha colaborado también en varias revistas, noticieros de radio y otros medios.

Maribel Pallanez Murrieta es Profesora de Tiempo Completo de la Universidad Estatal de Sonora. Es Licenciada en Ecología por la actual Universidad Estatal de Sonora (UES). Tiene Maestría y Doctorado en Ciencias Sociales por El Colegio de Sonora bajo la especialidad en Estudios Regionales y Ambientales. Sus líneas de investigación abarcan Áreas Naturales Protegidas, Educación ambiental, Valoración económica de servicios ambientales, instrumentos de gestión para la conservación con participación social y conflictos socioambientales. Tiene experiencia de 23 años en labores de investigación, docencia y gestión de proyectos de conservación con participación comunitaria. Desde el año 2002 a la fecha, es profesora e investigadora de la carrera de Licenciado en Ecología de la UES, donde además de haberse desempeñado en docencia e investigación, ha colaborado en varios puestos administrativos. Publica en revistas arbitradas, dirige tesis de licenciatura, es sinodal de tesis doctoral, dictaminadora de artículos científicos para la revista Región y Sociedad, ha presentado trabajos en congresos nacionales e internacionales, ha sido moderadora en mesas de trabajo de diferentes congresos de investigación e instructora de diferentes cursos. Asimismo, ha sido parte del Consejo Consultivo del Instituto Municipal de Planeación Urbana (IMPLAN) y actualmente es Consejera Titular del Instituto Municipal de Ecología.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License