SciELO - Scientific Electronic Library Online

 
vol.111 número2Manejo odontológico de pacientes con el síndrome de Ehlers-Danlos. Revisión narrativaEvaluación de hábitos de medicación sistémica de odontólogos especialistas y no especialistas en endodoncia ante patologías pulpares en Argentina índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

  • No hay articulos citadosCitado por SciELO

Links relacionados

  • No hay articulos similaresSimilares en SciELO

Compartir


Revista de la Asociación Odontológica Argentina

versión On-line ISSN 2683-7226

Rev. Asoc. Odontol. Argent. vol.111 no.2 Ciudad Autónoma de Buenos Aires jul. 2023

http://dx.doi.org/10.52979/raoa.1110871.1214 

AVANCES TECNOLÓGICOS

BlueShaper: un nuevo sistema multialeación para la instrumentación mecanizada en endodoncia. Comunicación breve

BlueShaper: a new multialloy system for mechanized instrumentation in endodontics. Brief communication

aCátedra de Endodoncia 1, Escuela de Odontología USAL/AOA, Facultad de Medicina, Universidad del Salvador, Buenos Aires, Argentina

bPosgrado de Endodoncia, Asociación Odontológica Salteña, Salta, Argentina

cMaster de Microcirugía Endodóntica, Universidad del Rey Juan Carlos, Madrid, España

Resumen

El objetivo de esta comunicación es describir y analizar el sistema BlueShaper para la preparación quirúrgica mecanizada de los conductos radiculares.

El sistema dispone de un set básico de 4 limas: Z1, Z2, Z3 y Z4, con un D0 de 0,14 mm, 0,17 mm, 0,19 mm y 0,25 mm respectivamente y conicidad variable que oscila entre el 2 y 10 %. La lima Z1 posee una aleación Pink, que le confiere mayor resistencia a la torsión y una gran capacidad de corte. Las limas Z2, Z3 y Z4 presentan una aleación Blue que aumenta la resistencia a la fatiga cíclica e incrementa su flexibilidad. Para conductos radiculares más amplios se incluyen, además, las limas Z5, Z6 y Z7. La empresa comercializa conos de gutapercha BlueShaper que se corresponden con las limas Z3, Z4, Z5, Z6 y Z7. El sistema de limas multialeación BlueShaper podría considerarse como un nuevo aporte clínico para la preparación mecánica de los conductos radiculares.

Palabras clave: BlueShaper; instrumentación mecanizada; sistema multialeación; tratamiento térmico

Abstract

The aim of this communication was to describe and analyze the BlueShaper system for the mechanized surgical preparation of root canals.

The system has a basic set of 4 files: Z1, Z2, Z3 and Z4, with 0.14 mm, 0.17 mm, 0.19 mm and 0.25 mm DO respectively, and variable conicity ranging between 2 and 10 %. Z1 file has a Pink alloy, which gives it greater resistance to torsion and great cutting capacity. The Z2, Z3 and Z4 files feature a Blue alloy that increases resistance to cyclic fatigue and increases their flexibility. For larger root canals, the Z5, Z6 and Z7 files are also included. The company supplies specific BlueShaper´s gutta-percha cones for Z3, Z4, Z5, Z6 and Z7 files. The BlueShaper multialloy file system could be considered as a new clinical contribution for the mechanical preparation of root canals.

Keywords: BlueShaper; heat treatment; mechanized instrumentation; multialloy system

Introducción

Lograr una apropiada limpieza y conformación del sistema de conductos radiculares constituye la base de un adecuado tratamiento endodóntico, posteriormente garantizado por su correcta obturación. (1,2)

Históricamente, estos procedimientos siempre se realizaron en forma manual, con instrumentos convencionales de acero inoxidable. A partir de la década del 90, con la incorporación de los instrumentos de níquel titanio y la utilización de motores eléctricos de alto torque y baja velocidad, la instrumentación mecanizada ha experimentado un importante y exponencial desarrollo, tomando un rol significativo que continúa vigente en el presente. (3)

Muchos han sido los avances que se han producido en los instrumentos de los diferentes sistemas mecanizados: modificaciones en la conicidad, en la sección, en el diseño de la punta, en el movimiento, etc. (4) Surgieron así mismo transformaciones en las aleaciones, producto de tratamientos térmicos y eléctricos que confirieron mayor flexibilidad y resistencia a la fatiga cíclica, (5) en comparación con el níquel titanio convencional. (6,7)

Una abundante y frecuente irrigación durante de la preparación quirúrgica favorece la acción de los instrumentos por su efecto lubricante y ayuda a remover los detritus generados durante la instrumentación.

En base a estos principios, la empresa Zarc4Endo (Gijón, España) ha lanzado recientemente al mercado internacional el primer sistema multialeación (Gold y Blue) llamado BlueShaper (ZARC, Shenzhen Denco Medical, Longhua District, China) para ser utilizado con un motor eléctrico.

El objetivo de esta comunicación es describir y analizar el sistema BlueShaper para la preparación quirúrgica mecanizada de los conductos radiculares.

Informe

El sistema BlueShaper dispone de un set básico de 4 limas: Z1, Z2, Z3 y Z4, incluidas en un blíster pre-esterilizado.

Estas limas tienen un D0 de 0,14 mm, 0,17 mm, 0,19 mm y 0,25 mm respectivamente y una conicidad variable que oscila entre el 2 y 10 % en las limas Z1 y Z2 y 5 y 6 % en las limas Z3 y Z4 >(fig. 1).

Figura 1 Limas Z1, Z2, Z3 y Z4. Sistema doble aleación Blue-Shaper. 

Para conductos radiculares más amplios se incluyen, además, las limas Z5, Z6 y Z7 con un diámetro en la punta del instrumento de 0,30 mm, 0,40 mm y 0,50 mm respectivamente. Todos los instrumentos tienen 16 mm en su parte activa. Son accionados por un motor eléctrico de rotación continua a 500 rpm y 4 Ncm de torque.

Discusión

La lima Z1 del sistema BlueShaper presenta una nueva aleación con tratamiento térmico denominada Pink, la cual le confiere mayor resistencia a la torsión, suficiente para avanzar en conductos radiculares muy estrechos. Y tiene una gran capacidad de corte >(fig. 2). Esta aleación se obtiene con un tratamiento térmico intermedio entre el Gold y Blue, intentando mantener un equilibrio entre la resistencia a la torsión y la flexibilidad.

Figura 2 Lima Z1, aleación Pink 

La aleación Blue de las limas (Z2, Z3 y Z4) presenta un aumento de la resistencia a la fatiga cíclica y un incremento de la flexibilidad, que tienen el propósito de respetar la anatomía original en conductos radiculares de gran curvatura. Todas las limas presentan una sección triangular convexa y un ángulo helicoidal constante de corte >(fig. 3).

Figura 3 A: Microscopia electrónica de barrido. B: Sección triangular convexa de la lima Z1. 

Debido a su gran flexibilidad, permiten realizar preparaciones quirúrgicas adecuadas, aún en curvaturas muy severas, evitando desgastar zonas indebidas y protegiendo en consecuencia la estructura dentaria >(fig. 4). De este modo es posible obtener una conformación adecuada, que respete la anatomía original del conducto radicular >(figs. 5 y 6).

Figura 4 A: Radiografía preoperatoria de un primer molar superior que presenta una curvatura muy severa en la raíz disto-vestibular. B: Radiografía posoperatoria. 

Figura 5 Preparación quirúrgica y obturación que respeta la anatomía original de los conductos radiculares. A: Radiografía preoperatoria. B: Radiografía posperatoria. 

Figura 6 A: Radiografía preoperatoria de segundo molar superior con curvaturas severas. B: Radiografía posoperatoria respetando la anatomía original de los conductos radiculares. 

Las aleaciones utilizadas en los instrumentos mecanizados contienen aproximadamente 56 % de níquel y 44 % de titanio, un cambio en la composición de estas aleaciones puede resultar en una modificación de la temperatura de transformación que afecta las características mecánicas de las mismas. (8)

A temperatura ambiente, estas aleaciones se encuentran en forma de austenita, que es una estructura cúbica centrada. (7) Al enfriarse, la forma austenita se convierte en una estructura monoclínica llamada martensita debido a una clásica contracción térmica lineal.

La temperatura se considera uno de los factores cruciales que influyen en las propiedades mecánicas de la aleación de níquel-titanio, y en su capacidad de flexión. (9,10) Este tratamiento térmico de los instrumentos interviene directamente en su comportamiento en las fases austenita/martensita, aumentando o disminuyendo la elasticidad de las limas a diferentes temperaturas. (11-14)

Un predominio en la fase martensítica les confiere mayor flexibilidad, por lo tanto, mayor resistencia a la fatiga cíclica y disminución en la propagación de cracks en el metal, (15-16) lo cual permite una mayor cantidad de usos en la práctica clínica.

Diferentes estudios (12,17-20) compararon la conformación de los conductos radiculares de las aleaciones tradicionales con aquellas que recibieron diferentes tratamientos térmicos como M-Wire, Gold-Wire y Blue-Wire. Los resultados mostraron que estas últimas produjeron significativamente menos transporte apical y una conformación más centrada en el conducto radicular.

A temperatura ambiente la aleación Gold presentó menor resistencia a la fatiga cíclica. (21-24) Alcalde (et al.25) y Elsaka (et al.26) han informado que esta situación podría estar relacionada con la conicidad de los instrumentos o sus secciones transversales.

Probablemente el tipo de tratamiento térmico y el tipo de aleación de NiTi utilizada en estos estudios puedan explicar las diferencias en los resultados. (22,23)

El tratamiento térmico de las aleaciones Blue determinan su color por la variación en el tiempo y grados de temperatura a la que es sometida. Este procedimiento asegura el control de la memoria de la aleación y la ausencia de memoria elástica como un factor relevante en el aumento de la resistencia a la fatiga cíclica. (6,15,27-29)

También puede verse influenciada por el área de la sección de los instrumentos, cuanto más pequeñas son las secciones transversales mayor es la resistencia a la fatiga cíclica. (30-32)

Silva (et al.33) investigaron la relación de la temperatura ambiental en el comportamiento torsional de las aleaciones de NiTi convencional (25.06) y los instrumentos de NiTi con tratamiento térmico, y no encontraron diferencias significativas entre las limas testeadas a 21 y 35 °C. Por lo tanto, los autores plantean que las variaciones de temperatura no afectarían el comportamiento torsional. Sin embargo, las diferencias en las condiciones metodológicas y la falta de otros hallazgos requieren más investigaciones para confirmarlo.

Para la obturación endodóntica la empresa Zarc 4 comercializa conos de gutapercha BlueShaper (ZARC, Shanghai Xing Yu, Medical Equipment Co. Ltd., China) específicos para las limas Z3, Z4, Z5, Z6 y Z7 con el fin de lograr una adecuada correlación con el último instrumento utilizado en el tercio apical >(fig. 7). Esta característica facilita el ajuste apical del cono principal, para luego complementarlo con cualquier otra técnica de obturación endodóntica.

Figura 7 A: Radiografías preoperaratoria. B: Conductometría. C: Conometría con cono de gutapercha Zarc Z4. D: Radiografía posoperatoria. E: Radiografía de control a los 6 meses. 

Conclusión

Según la información presentada, el sistema de limas multialeación BlueShaper puede ser considerado un nuevo aporte clínico para la preparación quirúrgica de los conductos radiculares.

Agradecimientos

Al Dr. Fernando Goldberg por su colaboración en la redacción del artículo científico y al Dr. André

Referencias

1 Schilder H. Cleaning and shaping the root canal. Dent Clin North Am 1974;12:269-96. [ Links ]

2 Weine FS. Endodontic therapy, 5ª ed., St. Louis, Mosby 1996, pp. 305-92. [ Links ]

3 Soares IJ, Goldberg F. Endodoncia. Técnica y fundamentos. Porto Alegre, Artmed, 2001, pp. 145-54. [ Links ]

4 Sattapan B, Palamara JEA, Messer HH. Torque during canal instrumentation using rotary nickel-titanium files. J Endod 2000;26:156-60. https://doi.org/10.1097/00004770-200003000-00007Links ]

5 Shen Y, Zhou H, Zheng T, Peng B, Haapasalo M. Current challenges and concepts of the thermomechanical treatment of nickel-titanium instruments. J Endod 2013;39:163- 72. https://doi.org/10.1016/j.joen.2012.11.005Links ]

6 Gao Y, Gutmann JL, Wilkinson K, Maxwell R, Ammon D. Evaluation of the impact of raw materials on the fatigue and mechanical properties of ProFile Vortex rotary instruments. J Endod 2012;38:398-401. https://doi.org/10.1016/j.joen.2011.11.004Links ]

7 Ye J, Gao Y. Metallurgical characterization of M-Wire nickel-titanium shape memory alloy used for endodontic rotary instruments during low-cycle fatigue. J Endod 2012;38:105-7. https://doi.org/10.1016/j.joen.2011.09.028Links ]

8 Mohammadi Z, Soltani MK, Shalavi S, Asgary S. A Review of the various surface treatments of NiTi instruments. Iran Endod J 2014;9:235–40. [ Links ]

9 Ebihara A, YahataY, Miyara K, Nakano K, Hayashi Y, Suda H. Heat treatment of nickel-titanium rotary endodontic instruments: effects on bending properties and shaping abilities. Int Endod J 2011;44:843–9. https://doi.org/10.1111/j.1365-2591.2011.01891.xLinks ]

10 Miyai K, Ebihara A, Hayashi Y, Doi H, Suda H, Yoneyama T. Influence of phase transformation on the torsional and bending properties of nickel-titanium rotary endodontic instruments. Int Endod J 2006;39:119–26. https://doi.org/10.1111/j.1365-2591.2006.01055.xLinks ]

11 Shen Y, Huang X, Wang Z, Wei X, Haapasalo M. Low environmental temperature influences the fatigue resistance of nickel-titanium files. J Endod 2018;44:626–9. https://doi.org/10.1016/j.joen.2017.11.004Links ]

12 Zupanc J, Vahdat-Pajouh N, Scha?fer E. New thermomechanically treated NiTi alloys- a review. Int Endod J 2018;51:1088–103. https://doi.org/10.1111/iej.12924Links ]

13 Martins JNR, Silva EJNL, Marques D, Belladonna F, Simo?es-Carvalho M, Vieira VTL, et al. Design, metallurgical features, mechanical performance and canal preparation of six reciprocating instruments. Int Endod J 2021;54:1623–37. https://doi.org/10.1111/iej.13529Links ]

14 Martins JNR, Silva EJNL, Marques D, Pereira MR, Vieira VTL, Arantes-Oliveira S, et al. Design, metallurgical features, and mechanical behaviour of NiTi endodontic instruments from five different heat-treated rotary systems. Materials 2022;15:1009. https://doi.org/10.3390/ma15031009Links ]

15 De-Deus G, Silva EJNL, Vieira VTL, Belladonna FG, Elias CN, Plotino G, et al. Blue thermomechanical treatment optimizes fatigue resistance and flexibility of the reciproc files. J Endod 2017;43:462–6. https://doi.org/10.1016/j.joen.2016.10.039Links ]

16 Pereira ESJ, Gomes RO, Leroy AMF, Singh R, Peters OA, Bahia MGA, et al. Mechanical behavior of M-wire and conventional NiTi wire used to manufacture rotary endodontic instruments. Dental Materials 2013;29:e318– e324. https://doi.org/10.1016/j.dental.2013.10.004Links ]

17 Lopes HP, Gambarra-Soares T, Elias CN, Siqueira Jr. JF, Inojosa IF, Lopes WSP, et al. Comparison of the mechanical properties of rotary instruments made of conventional nickel-titanium wire, M-Wire, or nickel-titanium alloy in R-phase. J Endod 2013;39:516–20. https://doi.org/10.1016/j.joen.2012.12.006Links ]

18 Zupanc J, Vahdat-Pajouh N, Scha?fer E. New thermomechanically treated NiTi alloys- a review. Int Endod J 2018;51:1088–103. https://doi.org/10.1111/iej.12924Links ]

19 Silva EJNL, Tameirao MDN, Belladonna FG, Neves AA, Souza EM, De-Deus G. Quantitative transportation assessment in simulated curved canals prepared with an adaptive movement system. J Endod 2015;41:1125–9. https://doi.org/10.1016/j.joen.2015.02.028Links ]

20 O?zyu?rek T, Gu?ndog?ar M, Uslu G, Y?lmaz K, Staffoli S, Nm G, et al. Cyclic fatigue resistances of Hyflex EDM, WaveOne gold, Reciproc Blue and 2Shape NiTi rotary files in different artificial canals. Odontology 2018;106:408–13. https://doi.org/10.1007/s10266-018-0340-yLinks ]

21 Alcalde MP, Duarte MAH, Bramante CM, de Vasconselos BC, Tanomaru-Filho M, Guerreiro-Tanomaru JM, et al. Cyclic fatigue and torsional strength of three different thermally treated reciprocating nickel-titanium instruments. Clin Oral Investig 2018;22:1865–71.https://doi.org/10.1007/s00784-017-2295-8. Publicado electrónicamente antes de su impresión el 9 de diciembre de 2017. Errata en: Clin Oral Investig 26 de diciembre de 2017. [ Links ]

22 Menezes SEAC, Batista SM, Lira JOP, de Melo Monteiro GQ. Cyclic fatigue resistance of WaveOne Gold, ProDesign R and ProDesign Logic files in curved canals in vitro. Iran Endod J 2017;12:468–73. https://doi.org/10.22037/iej.v12i4.17494Links ]

23 Kim JW, Ha JH, Cheung GSP, Versluis A, Kwak SW, Kim HC. Safety of the factory preset rotation angle of reciprocating instruments. J Endod 2014;40:1671–5. https://doi.org/10.1016/j.joen.2014.06.002Links ]

24 Silva E, Oliveira de Lima C, Vieira V, Antunes H, Lima Moreira EJ, Versiani M. Cyclic fatigue and torsional resistance of four martensite-based nickel titanium reciprocating instruments. Eur Endod J 2020;5:231–5. https://doi.org/10.14744/eej.2020.16878Links ]

25 Alcalde MP, Tanomaru-Filho M, Bramante CM, Duarte MAH, Guerreiro-Tanomaru JM, Camilo-Pinto J, et al. Cyclic and torsional fatigue resistance of reciprocating single files manufactured by different nickel-titanium alloys. J Endod 2017;43:1186–91. https://doi.org/10.1016/j.joen.2017.03.008Links ]

26 Elsaka SE, Elnaghy AM, Badr AE. Torsional and bending resistance of WaveOne Gold, Reciproc and Twisted File Adaptive instruments. Int Endod J 2016;50:1077–83. https://doi.org/10.1111/iej.12728Links ]

27 Plotino G, Grande NM, Cotti E, Testarelli L, Gambarini G. Blue treatment enhances cyclic fatigue resistance of vortex nickel-titanium rotary files. J Endod 2014;40:1451-3. https://doi.org/10.1016/j.joen.2014.02.020Links ]

28 Plotino G, Grande NM, Testarelli L, Gambarini G, Castagnola R, Rossetti A, et al. Cyclic fatigue of Reciproc and Reciproc Blue Nickel-titanium reciprocating files at different environmental temperatures. J Endod 2018;44:1549- 52. https://doi.org/10.1016/j.joen.2018.06.006Links ]

29 Silva EJNL, Vieira VTL, Hecksher F, Dos Santos Oliveira MRS, dos Santos Antunes H, Moreira EJL. Cyclic fatigue using severely curved canals and torsional resistance of thermally treated reciprocating instruments. Clin Oral Investig 2018;22:2633-8. https://doi.org/10.1007/s00784-018-2362-9Links ]

30 Shim KS, Oh S, Kum KY, Kim YC, Jee KK, Chang SW. Mechanical and metallurgical properties of various nickel-titanium rotary instruments. BioMed Res Int 2017;2017:4528601. https://doi.org/10.1155/2017/4528601Links ]

31 Kaval ME, Capar ID, Ertas H. Evaluation of the cyclic fatigue and torsional resistance of novel nickel-titanium rotary files with various alloy properties. J Endod 2016;42:1840- 3. https://doi.org/10.1016/j.joen.2016.07.015Links ]

32 Varghese NO, Pillai R, Sujathen UN, Sainudeen S, Antony A, Paul S. Resistance to torsional failure and cyclic fatigue resistance of ProTaper Next, WaveOne, and Mtwo files in continuous and reciprocating motion: An in vitro study. J Conserv Dent 2016;19:225-30. https://doi.org/10.4103/0972-0707.181937Links ]

33 Silva EJNL, Giraldes JFN, de Lima CO, Vieira VTL, Elias CN, Antunes HS. Influence of heat treatment on torsional resistance and surface roughness of nickel-titanium instruments. Int Endod J 2019;52:1645–51. https://doi.org/10.1111/iej.13164Links ]

Fuentes de financiamiento

Los materiales para realizar los casos clínicos fueron provistos por la empresa Zarc4Endo (Gijón, España).

Recibido: 15 de Diciembre de 2022; Aprobado: 27 de Junio de 2023

Contacto: Carlos Cantarinicarlos.cantarini@gmail.com

Declaración de conflicto de intereses

Los autores son líderes de opinión de la empresa Zarc4Endo (Gijón, España).

Creative Commons License Esta obra está bajo una licencia Creative Commons Atribución-NoComercial 2.5 Argentina.