SciELO - Scientific Electronic Library Online

SciELO - Scientific Electronic Library Online

Referencias del artículo

VARGAS, Jorge. Admissible restriction of holomorphic discrete series for exceptional groups. Rev. Unión Mat. Argent. [online]. 2008, vol.49, n.2, pp. 67-80. ISSN 1669-9637.

    [1]    Adams, J.F., Lectures on exceptional Lie groups, Chicago Lectures in Mathematics, (1996). University of Chicago Press. [ Links ]

    [2]    Benson, C., Ratcliff, G., A classification of multiplicity free actions, J. Algebra, (181), 152-186, (1996). [ Links ]

    [3]    Bourbaki, N., Groupes et Algèbres de Lie, Chap 8, Masson et Cie, (1982). [ Links ]

    [4]    Brion, M., Sur l'image de l'application moment. Springer Lecture Notes in Math., 1296, 177-192 (1987) [ Links ]

    [5]    Dynkin, E.B., Maximal subgroups of classical groups, Transl. AMS (2)6, 245-378, (1957). [ Links ]

    [6]    Duflo, M., Vargas, J., Proper maps and multiplicities, preprint. An announcement is in [24]. [ Links ]

    [7]    Faraut, J., Koranyi, A., Analysis on symmetric connes, Oxford University Press (1995). [ Links ]

    [8]    Freundenthal, H., de Vries, H., Linear Lie Groups, Academic Press,(1969). [ Links ]

    [9]    Huang, J., Vogan, D., The moment map and the geometry of admissible representations, preprint. [ Links ]

    [10]    Kimura, T., A classification of prehomogeneous vector spaces of simple algebraic groups with scalar multiplication, J. Algebra, 83, 72-100, (1983). [ Links ]

    [11]    Kimura, T., Introduction to prehomogeneous vector spaces, Translation of Mathematical Monographs, Vol. 215, AMS, (2002). [ Links ]

    [12]    Kobayashi, T., Discrete decomposability of the restriction of A 𝔮(λ) with respect to reductive subgroups, Invent. Math. 131, 229-256 (1998). [ Links ]

    [13]    Kobayashi, T., Branching Problems of Unitary representations, Proceedings of the International Congress of Mathematicians, Vol II, 615-627, (2002). [ Links ]

    [14]    Kobayashi, T. Restrictions of unitary representations of real reductive groups. In: Lie theory: Unitary representations and compactifications of symmetric spaces, 139-207, Progr. Math., 229, Birkhäuser Boston, Boston, MA, 2005. [ Links ]

    [15]    Kobayashi, T., Multiplicity free Representations and Visible actions on complex manifolds, preprint. [ Links ]

    [16]    Komrakov, B., Maximal subalgebras of real Lie algebras and a problem of Sophus Lie, Soviet Math. Dokl. Vol. 41, 269-273, (1990). [ Links ]

    [17]    Littelmann, P. Koreguläre und äquidimensionale Darstellungen. J. Algebra 123 (1989), no. 1, 193-222. [ Links ]

    [18]    Ness, L., with an appendix by Mumford, D., A stratification of the nullcone via moment map, Amer. J. Math. 106, 1281-1330 (1984) [ Links ]

    [19]    Paradan, E., Multiplicities of holomorphic representations relatively to compact subgroups, Harmonische Analysis und Darstellungstheorie Topologischer Gruppen, Oberwolfach Report, 49/2007. [ Links ]

    [20]    Schmid, W., Die Randerwerte holomorpher Funktionen auf hermitesch symmetrischen Räumen, Inventiones Math.. vol 9, 61-80, (1969). [ Links ]

    [21]    Simondi, S., Restricción de representaciones de cuadrado integrable, Ph. D. Thesis, FAMAF, Universidad Nacional de Córdoba, Argentina, (2006). [ Links ]

    [22]    Solomon, S., Irreducible linear group-subgroup pairs with the same invariants, J. Lie Theory 15, 105-123, (2005). [ Links ]

    [23]    Solomon, S., Orthogonal linear group-subgroup pairs with the same invariants, J. Algebra 299 623-647, (2006). [ Links ]

    [24]    Vargas, J., Restriction of square integrable representations, a review, Symposium in representation theory, edited by Yamashita, J., Hokadate, Japon, 62-79, (2003). [ Links ]

    [25]    Vergne, M., Quantization of algebraic cones and Vogan's conjecture, Pacific Journal of Math. Vol. 182, 114-135, (1998). [ Links ]

    [26]    Vogan, D., Associated varieties and unipotent representations, Harmonic Analysis on Reductive Lie groups, Progress in Math. Vol. 101, Birkhäuser, 315-388, (1991). [ Links ]