SciELO - Scientific Electronic Library Online

SciELO - Scientific Electronic Library Online

Referencias del artículo

BARBERIS, M. L.. A survey on hyper-Kähler with torsion geometry. Rev. Unión Mat. Argent. [online]. 2008, vol.49, n.2, pp. 121-131. ISSN 1669-9637.

    [1]    B. Banos, A. Swann, Potentials for hyper-Kähler metrics with torsion, Class. Quant.Grav. 21 (2004) 3127-3136. [ Links ]

    [2]    M.L. Barberis, I. Dotti, R. Miatello, On certain locally homogeneous Clifford manifolds, Ann. Glob. Anal. Geom. 13 (1995), 289-301. [ Links ]

    [3]    M.L. Barberis, I. Dotti, Abelian complex structures on solvable Lie algebras, J. Lie Theory 14 (1) (2004), 25-34. [ Links ]

    [4]    M.L. Barberis, I. Dotti, M. Verbitsky, Canonical bundles of complex nilmanifolds, with applications to hypercomplex geometry, arXiv:math.DG/0712.3863, to appear in Math. Res. Lett. [ Links ]

    [5]    M.L. Barberis, A. Fino, New strong HKT manifolds arising from quaternionic representations, arXiv:0805.2335. [ Links ]

    [6]    C. Benson, C.S. Gordon, Kähler and symplectic structures on nilmanifolds, Topology 27(4) (1988) 513-518. [ Links ]

    [7]    J. M. Bismut, Local index theorem for non-Kähler manifolds, Math. Ann. 284 (1989), 681-699. [ Links ]

    [8]    G.R. Cavalcanti, M. Gualtieri, Generalized complex structures on nilmanifolds, arXiv:math/0404451, J. Symplectic Geom. 2 (3) (2004), 393-410. [ Links ]

    [9]    I. Dotti, A. Fino, Hyper-Kähler with torsion structures invariant by nilpotent Lie groups, Class. Quantum Grav. 19 (2002), 1-12. [ Links ]

    [10]    A. Fino, G. Grantcharov, Properties of manifolds with skew-symmetric torsion and special holonomy, Adv. Math. 189 (2004), 439-450. [ Links ]

    [11]    S. J. Gates, C.M. Hull, M. Roček, Twisted multiplets and new supersymmetric non-linear σ -models, Nucl. Phys. B 248 (1984), 157-186. [ Links ]

    [12]    P. Gauduchon, K.P. Tod, Hyper-Hermitian metrics with symmetry, J. Geom. Phys. 25 (1998), 291-304. [ Links ]

    [13]    G. W. Gibbons, G. Papadopoulos, K. Stelle, HKT and OKT geometries on soliton blach hole moduli space, Nucl. Phys. B 508 (1997), 623. [ Links ]

    [14]    C. S. Gordon and E. N. Wilson, The spectrum of the Laplacian on Riemannian Heisenberg manifolds, Michigan Math. J. 33 (2) (1986), 253-271. [ Links ]

    [15]    G. Grantcharov, G. Papadopoulos,, Y. S. Poon, Reduction of HKT-Structures, J. Math. Phys. 43 (2002), 3766-3782. [ Links ]

    [16]    G. Grantcharov, Y. S. Poon, Geometry of hyper-Kähler connection with torsion, Comm. Math. Phys. 213 (2000), 19-37. [ Links ]

    [17]    P. Griffiths, J. Harris, Principles of algebraic geometry, Wiley-Interscience, New York, 1978. [ Links ]

    [18]    K. Hasegawa, Minimal models of nilmanifolds, Proc. Am. Math. Soc. 106 (1989), 65-71. [ Links ]

    [19]    P.S. Howe, G. Papadopoulos, Twistor spaces for HKT manifolds, Phys. Lett. B 379 (1996), 81-86. [ Links ]

    [21]    S. Ivanov, I. Minchev, Quaternionic Kähler and hyper-Kähler manifolds with torsion and twistor spaces, J. Reine Angew. Math. 567 (2004), 215-233. [ Links ]

    [22]    D. Joyce, Compact hypercomplex and quaternionic manifolds, J. Diff. Geom. 35 (1992), 743-761. [ Links ]

    [23]    A. I. Mal'čev, On a class of homogeneous spaces, AMS Translation No. 39 (1951). [ Links ]

    [24]    F. Martín Cabrera, A. Swann, The intrinsic torsion of almost quaternion-Hermitian manifolds, arXiv:math.DG/0707.0939, to appear in Annales de l'Institute Fourier. [ Links ]

    [25]    J. Milnor, Curvatures of left invariant metrics on Lie groups, Adv. Math. 21 (3) (1976), 293-329. [ Links ]

    [26]    A. Opfermann, G. Papadopoulos, Homogeneous HKT and QKT manifolds, arXiv:math-ph9807026. [ Links ]

    [27]    G. Papadopoulos, A. Teschendorff, Multi angle five brane intersections, Phys. Lett. B 443 (1998), 159. [ Links ]

    [28]    G. Papadopoulos, KT and HKT geometries in strings and in black hole moduli spaces, Proceedings of the Bonn workshop on "Special Geometric Structures in String Theory", 8-11 September 2001, Eds.: D.V. Alekseevsky, V. Cortés, C. Devchand, A. Van Proeyen, arXiv:hep-th/0201111. [ Links ]

    [29]    H. Pedersen, Y.S. Poon, Inhomogeneous hypercomplex structures on homogeneous manifolds, J. Reine Angew. Math. 516 (1999), 159-181. [ Links ]

    [30]    P. Petravchuk, Lie algebras decomposable as a sum of an abelian and a nilpotent subalgebra, Ukr. Math. J. 40(3) (1988), 385-388. [ Links ]

    [31]    Ph. Spindel, A. Sevrin, W. Troost, A. Van Proeyen, Extended supersymmetric σ -models on group manifolds, Nucl. Phys. B 308 (1988), 662-698. [ Links ]

    [32]    W.P. Thurston, Some simple examples of symplectic manifolds, Proc. Am. Math. Soc. 55 (1976), 476-478. [ Links ]

    [33]    M. Verbitsky, Hyperkähler manifolds with torsion, supersymmetry and Hodge theory, Asian J. Math. 6 (2002), 679-712 . [ Links ]

    [34]    M. Verbitsky, Hyperkähler manifolds with torsion obtained from hyperholomorphic bundles, Math. Res. Lett. 10 (2003), 501-513. [ Links ]

    [35]    M. Verbitsky, Balanced HKT metrics and strong HKT metrics on hypercomplex manifolds preprint math.DG/0808.3218. [ Links ]