SciELO - Scientific Electronic Library Online

SciELO - Scientific Electronic Library Online

Referencias del artículo

RUEDA, Laura A.. The subvariety of Q-Heyting algebras generated by chains. Rev. Unión Mat. Argent. [online]. 2009, vol.50, n.1, pp. 47-59. ISSN 0041-6932.

    [1]    M. Abad and L. Monteiro, On free L-algebras, Notas de Lógica Matemática 35(1987), 1-20. [ Links ]

    [2]    M. Abad and J. P. Díaz Varela, Free Q-distributive lattices from meet semilattices, Discrete Math. 224 (2000), 1-14. [ Links ]

    [3]    M. Abad, J. P. Díaz Varela, L. Rueda and A. Suardíaz, Varieties of three-valued Heyting algebras with a quantifier, Studia Logica 65 (2000), 181-198. [ Links ]

    [4]    M. E. Adams and W. Dziobiak, Quasivarieties of distributive lattices with a quantifier, Discrete Math. 135(1994), 12-28. [ Links ]

    [5]    R. Balbes and Ph. Dwinger, Distributive Lattices, University of Missouri Press, Columbia, Missouri, 1974. [ Links ]

    [6]    G. Bezhanishvili, Locally finite varieties, Algebra Universalis 46(2001), No.4, 531-548. [ Links ]

    [7]    R. Cignoli, Quantifiers on distributive lattices, Discrete Math. 96(1991), 183-197. [ Links ]

    [8]    R. Cignoli, Free Q-distributive lattices, Studia Logica 56(1996), 23-29. [ Links ]

    [9]    P. R. Halmos, Algebraic Logic I. Monadic Boolean algebras, Compositio Math. 12 (1955), 217-249. [ Links ]

    [10]    A. Monteiro, Sur les Algèbres de Heyting Symétriques, Portugaliae Mathematica, 39 (1980), 1-237. [ Links ]

    [11]    A. Petrovich, Equations in the theory of Q-distributive lattices, Discrete Math. 17(1997), 211-219. [ Links ]

    [12]    H. A. Priestley, Ordered sets and duality for distributive lattices, Ann. Discrete Math. 23(1984), 39-60. [ Links ]

    [13]    H. A. Priestley, Natural dualities for varieties of distributive lattices with a quantifier, Banach Center Publications, Volume 28, Warszawa 1993, 291-310. [ Links ]

    [14]    L. Rueda, Algebras de Heyting lineales con un cuantificador Ph. D. Thesis, Universidad Nacional del Sur, Bahía Blanca, 2000. [ Links ]

    [15]    L. Rueda, Linear Heyting algebras with a quantifier, Annals of Pure and Applied Logic 108 (2001), 327-343. [ Links ]