SciELO - Scientific Electronic Library Online

SciELO - Scientific Electronic Library Online

Referencias del artículo

WOLSKM, Erika A; BARRERA, Viviana; CASTELLARI, Claudia  y  GONZALEZ, Jorge F. Biodegradation of phenol in static cultures by Penicillium chrysogenum ERK1: catalytic abilities and residual phototoxicity. Rev. argent. microbiol. [online]. 2012, vol.44, n.2, pp. 113-121. ISSN 0325-7541.

    1. Castellan C, Quadrelli A, Laich F. Surface mycobiota on Argentinean dry fermented sausages. Int J Food Microbiol 2010;142:149-55. [ Links ]

    2. Frisvad JC, Samson RA. Polyphasic taxonomy of Pnicillium subgenus pnicillium. A guide to identification of food and air-borne terverticillate penicillia and their mycotoxins. Studies Mycol 2004; 49: 1-174. [ Links ]

    3. Glass N, Donaldson G. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 1995; 61: 1323-30. [ Links ]

    4. Guedes S, Mendes B, Leitao A. Resorcinol degradation by a Pnicillium chrysogenum strain under osmotic stress: mono and binary substrate matrices with phenol. Biodgradation 2010; 22:409-19. [ Links ]

    5. Hofrichter M, Gtinther T, Fritsche W. Metabolism of phenol, chloro- and nitrophenols by the Pnicillium strain Bi 712 isolated from a contaminated soil. Biodgradation 1992; 3:415-21. [ Links ]

    7. Jones K, Trudgill P, Hopper D. Evidence of two pathways for the metabolism of phenol by Aspergillus fumigatus. Arch Microbiol 1995; 163:176-81. [ Links ]

    8. Laich F, Fierro F, Martin JF. Production of penicilli in by fungi growing on food products: identification of a complete penicillin gene cluster in Pnicillium griseofulvum and a truncated cluster in Pnicillium verrucosum. Appl Environ Microbiol 2002; 68:1211-9. [ Links ]

    9. Leitao A, Duarte M, Oliveira J. Degradation of phenol by a halotolerant strain Pnicillium chrysogenum. Int Biodeter Biodegrad 2007; 59:220-5. [ Links ]

    10. Leitao A. Potential of Pnicillium species in the bioremediation field. Int J Environ Res Public Health 2009; 6:1393-417. [ Links ]

    11. Levin L, Papinutti L, Forchiassin F. Evaluation of Argentinean white rot fungi for their ability to produce lignin-modifying enzymes and decolorize industrial dyes. Biores Technol 2004; 94:169-76. [ Links ]

    12. Marr J, Kremer S, Sterner O, Anke H. Transformation and mineralization of halophenols by Pnicillium simplicis simum SK9117. Biodgradation 1989; 7:165-71. [ Links ]

    13. McErlean C, Marchant R, Banat IM. An evaluation of soil colonisation potential of selected fungi and their production of ligninolytic enzymes for use in soil bioremediation applications. Antonie van Leeuwenhoek 2006; 90:147-58. [ Links ]

    18. Rodriguez E, Nuero O, Guilln F, Martnez A, Martnez M. Degradation of phenolic and non-phenolic aromatic pollutants by four Pleurotus species: the role of lacease and versatile peroxidase. Soil Biol Biochem 2004; 36:909-16. [ Links ]

    23. Samuels G, Ismaiel A. Trichoderma evansiiand T. Heckfeldtiae. two new T hamatum-Wke species. Mycologia 2009; 101:142-56. [ Links ]

    26. Shiftman D, Cohen S. Role of the imp operon of the Streptomyces coelicolor genetic element SLP1 : two imp-encoded proteins interact to autoregulate imp expression and control plasmid maintenance. J Bacterid 1993; 175:6767-74. [ Links ]

    27. Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 2007; 24:1596-9. [ Links ]

    28. Yamamoto D, Uchida J. Rapid nuclear staining of Rhizoctonia solani and related fungi with acridine orange and with safranin. Mycologia 1982; 74:145-9. [ Links ]