SciELO - Scientific Electronic Library Online

SciELO - Scientific Electronic Library Online

Referencias del artículo

MARTINEZ, M.; ELASKAR, S.; MAGLIONE, L.  y  SCARABINO, A.. Finite volume simulation of 2-D and 3-D non-stationary magnetogasdynamic flow. Lat. Am. appl. res. [online]. 2011, vol.41, n.2, pp. 191-198. ISSN 0327-0793.


    1. Brio, M. and C.C. Wu, "An upwind differencing scheme for the equations of ideal magnetohydrodynamics", J. of Computational Physics 75, 400-422 (1988). [ Links ]


    2. Costa, A., S. Elaskar, C. Fernández and G. Martinez, "Numerical simulation of dark inflow in post-flare-supra-arcade," Monthly Notices of the Royal Astronomical Society, 400, 85-89 (2009). [ Links ]


    3. D'Ambrosio, D. and D. Giordano, "Electromagnetic Fluid Dynamics for Aerospace Applications. Part I: Classification and critical Review of Physical Models," AIAA Paper,2165 (2004). [ Links ]


    4. D'Ambrosio, D., M. Pandolfi and D. Giordano, "Electromagnetic Fluid Dynamics for Aerospace Applications. Part II: Numerical Simulation Using Different Physical Models," AIAA Paper, 2362. (2004). [ Links ]


    5. Dendy, R., Plasma Physics. An Introductory Course, Cambridge University Press, Cambridge (1999). [ Links ]


    6. Elaskar, S. and H. Brito, "Solution of real magnetogasdynamics equations using a TVD scheme as a tool for electric propulsion," International Electric Propulsion Conference, Pasadena., IEPC-01-161 (2001) [ Links ]


    7. Elaskar, S., C. Sanchez and H. Brito, "Numerical Tools for the Simulation of the APPT behaviour: Arc Generation and Plasma Flow," Third International Conference on Spacecraft Propulsion, Cannes, France, October (2000). [ Links ]


    8. Fernández, C., A. Costa, S. Elaskar and W. Schulz, "Numerical simulation of the internal plasma dynamics of post-flare loops," Monthly Notices of the Royal Astronomical Society, 400, 1821-1828 (2009). [ Links ]


    9. Godunov, S., "A Finite Difference Method for the Computation of Discontinuous Solutions of the Equations of Fluid Dynamics," Mat. Sb., 47, 357-393 (1959) [ Links ]


    10. Godunov, S., Numerical Solution of Multi-Dimensional Problems in Gas Dynamics, Nauka Press, Moscow, (1976) [ Links ]


    11. Keppens, R., "Dynamics controlled by magnetic fields: parallel astrophysical computations", Parallel Computational Fluid Dynamics - Trends and Applications, eds. C.B. Jenssen et al., Amsterdam, Elsevier Science B.V., 31-42 (2001). [ Links ]


    12. Leveque, R., Numerical Methods for Hyperbolic Systems, Cambridge Text in Applied Mathematics, Cambridge (2005). [ Links ]


    13. Loverich, J., A finite volume algorithm for the two fluid plasma system in one dimension, Master Thesis, University of Washington (2004). [ Links ]


    14. Maglione, L. Simulación numérica del flujo magnetogasdinámico inestacionario en dos dimensiones, Master Thesis, Univ. Nacional de Río Cuarto, Argentina (2004). [ Links ]


    15. Maglione, L., S. Elaskar and H. Brito, "Numerical simulation of two-dimensional, non-steady, ideal magnetogasdynamic equations," International Electric Propulsion Conference, Toulouse, IEPC-03-070. (2003). [ Links ]


    16. Maglione, L., S. Elaskar, H. Brito, R. Dean and L. Lifschitz, "A software engineering for numerical simulation of 2D non-stationary real MGD flows," PAMM, 7, 2010027-2010029 (2007). [ Links ]


    17. Powell, K., An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension), NASA Contract No NAS1-19489, ICASE, NASA Langley Research Laboratory, Hampton (1995). [ Links ]


    18. Roe, P.L., "Approximate Riemann solvers, parameter vectors and difference scheme," Journal of Computational Physics, 43, 357-372 (1981). [ Links ]


    19. Roe, P.L., "Characteristic-based schemes for the Euler equations," Ann. Rev. Fluid Mech., 18, 337-365 (1986). [ Links ]


    20. Sankaran, K., Simulation of MPD Flows Using a Flux-Limited Numerical Method for the MHD Equations, Master Thesis, Princeton University (2003). [ Links ]


    21. Sutton, G. and A. Sherman, Engineering Magnetohydrodynamics, MacGraw-Hill, New York (1965). [ Links ]


    22. Udrea, B., An advanced implicit solver for MHD, PhD Thesis, University of Washington (1999). [ Links ]


    23. Yee, H., R. Warming and A. Harten, "Implicit Total Variation Diminishing (TVD) Schemes for Steady-state Calculations," Journal of Computational Physics, 57, 327-360 (1985). [ Links ]


    24. Yee, H., A class of high resolution explicit and implicit shock-capturing methods, NASA Report N89-25652 (1989). [ Links ]